TumorDetNet: A unified deep learning model for brain tumor detection and classification

被引:7
|
作者
Ullah, Naeem [1 ]
Javed, Ali [1 ]
Alhazmi, Ali [2 ]
Hasnain, Syed M. [3 ]
Tahir, Ali [2 ]
Ashraf, Rehan [4 ]
机构
[1] Univ Engn & Technol, Dept Software Engn, Taxila, Pakistan
[2] Jazan Univ, Coll Comp Sci & Informat Technol, Jazan, Saudi Arabia
[3] Prince Mohammad Bin Fahd Univ, Dept Math & Nat Sci, Al Kobar, Saudi Arabia
[4] Natl Text Univ, Dept Comp Sci, Faisalabad, Pakistan
来源
PLOS ONE | 2023年 / 18卷 / 09期
关键词
MRI; FEATURES; FUSION;
D O I
10.1371/journal.pone.0291200
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate diagnosis of the brain tumor type at an earlier stage is crucial for the treatment process and helps to save the lives of a large number of people worldwide. Because they are non-invasive and spare patients from having an unpleasant biopsy, magnetic resonance imaging (MRI) scans are frequently employed to identify tumors. The manual identification of tumors is difficult and requires considerable time due to the large number of three-dimensional images that an MRI scan of one patient's brain produces from various angles. Moreover, the variations in location, size, and shape of the brain tumor also make it challenging to detect and classify different types of tumors. Thus, computer-aided diagnostics (CAD) systems have been proposed for the detection of brain tumors. In this paper, we proposed a novel unified end-to-end deep learning model named TumorDetNet for brain tumor detection and classification. Our TumorDetNet framework employs 48 convolution layers with leaky ReLU (LReLU) and ReLU activation functions to compute the most distinctive deep feature maps. Moreover, average pooling and a dropout layer are also used to learn distinctive patterns and reduce overfitting. Finally, one fully connected and a softmax layer are employed to detect and classify the brain tumor into multiple types. We assessed the performance of our method on six standard Kaggle brain tumor MRI datasets for brain tumor detection and classification into (malignant and benign), and (glioma, pituitary, and meningioma). Our model successfully identified brain tumors with remarkable accuracy of 99.83%, classified benign and malignant brain tumors with an ideal accuracy of 100%, and meningiomas, pituitary, and gliomas tumors with an accuracy of 99.27%. These outcomes demonstrate the potency of the suggested methodology for the reliable identification and categorization of brain tumors.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Hybrid Deep Learning Approach for Brain Tumor Segmentation and Classification
    Raju, Ayalapogu Ratna
    Pabboju, Suresh
    Rao, Ramisetty Rajeswara
    DISTRIBUTED COMPUTING AND OPTIMIZATION TECHNIQUES, ICDCOT 2021, 2022, 903 : 503 - 514
  • [42] Classification of Brain Tumor using Hybrid Deep Learning Approach
    Singh, Manu
    Shrimali, Vibhakar
    BRAIN-BROAD RESEARCH IN ARTIFICIAL INTELLIGENCE AND NEUROSCIENCE, 2022, 13 (02): : 308 - 327
  • [43] Deep semi-supervised learning for brain tumor classification
    Ge, Chenjie
    Gu, Irene Yu-Hua
    Jakola, Asgeir Store
    Yang, Jie
    BMC MEDICAL IMAGING, 2020, 20 (01)
  • [44] Deep semi-supervised learning for brain tumor classification
    Chenjie Ge
    Irene Yu-Hua Gu
    Asgeir Store Jakola
    Jie Yang
    BMC Medical Imaging, 20
  • [45] Brain Tumor Radiogenomic Classification Using Deep Learning Algorithms
    Abdullah, Azian Azamimi
    Zaharuddin, Nur Balqis Hanum
    Mohammad, Nur Farahiyah
    Mohamed, Latifah
    INTELLIGENT MANUFACTURING AND MECHATRONICS, SIMM 2023, 2024, : 771 - 788
  • [46] Brain Tumor Classification Using an Ensemble of Deep Learning Techniques
    Patro, S. Gopal Krishna
    Govil, Nikhil
    Saxena, Surabhi
    Kishore Mishra, Brojo
    Taha Zamani, Abu
    Ben Miled, Achraf
    Parveen, Nikhat
    Elshafie, Hashim
    Hamdan, Mosab
    IEEE ACCESS, 2024, 12 : 162094 - 162106
  • [47] Deep Learning Framework using CNN for Brain Tumor Classification
    Bhardwaj, Neha
    Sood, Meenakshi
    Gill, S. S.
    2022 5TH INTERNATIONAL CONFERENCE ON MULTIMEDIA, SIGNAL PROCESSING AND COMMUNICATION TECHNOLOGIES (IMPACT), 2022,
  • [48] Classification of brain tumor using deep learning at early stage
    Smitha, P.S.
    Balaarunesh, G.
    Sruthi Nath, C.
    Sabatini S, Aminta
    Measurement: Sensors, 2024, 35
  • [49] An Ensemble of Optimal Deep Learning Features for Brain Tumor Classification
    Aziz, Ahsan
    Attique, Muhammad
    Tariq, Usman
    Nam, Yunyoung
    Nazir, Muhammad
    Jeong, Chang-Won
    Mostafa, Reham R.
    Sakr, Rasha H.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (02): : 2653 - 2670
  • [50] Effectiveness of Deep Learning Models for Brain Tumor Classification and Segmentation
    Irfan, Muhammad
    Shaf, Ahmad
    Ali, Tariq
    Farooq, Umar
    Rahman, Saifur
    Mursal, Salim Nasar Faraj
    Jalalah, Mohammed
    Alqhtani, Samar M.
    AlShorman, Omar
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 76 (01): : 711 - 729