On the performance and interpretability of Mamdani and Takagi-Sugeno-Kang based neuro-fuzzy systems for medical diagnosis

被引:9
|
作者
Ouifak, Hafsaa [1 ]
Idri, Ali [1 ,2 ]
机构
[1] Mohammed Polytech VI Univ, MSDA, Ben Guerir, Morocco
[2] Mohammed V Univ, ENSIAS, Rabat, Morocco
关键词
Interpretability; neuro-fuzzy systems; fuzzy rules; medical data; INFERENCE; IDENTIFICATION; NETWORK; CLASSIFICATION; ANFIS; RULE;
D O I
10.1016/j.sciaf.2023.e01610
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Purpose: Neuro-fuzzy systems aim to combine the benefits of artificial neural networks and fuzzy inference systems: a neural network can learn patterns from data and achieves high performance, whereas a fuzzy system matches inputs and outputs using linguistic and interpretable rules. The combination of these two techniques yields models that can both perform well and provide interpretability in a fuzzy linguistic manner. Design: In this paper, the performance and interpretability of five neuro-fuzzy classifiers were evaluated (three Takagi-Sugeno-Kang (TSK) classifiers: adaptive neuro-fuzzy inference system (ANFIS), dynamic evolving neuro-fuzzy system (DENFIS), self-organizing fuzzy neu-ral network (SOFNN), and two Mamdani classifiers: hybrid fuzzy inference system (HyFIS) and neuro-fuzzy classifier (NEFCLASS)). All the empirical evaluations were over four bench-mark medical datasets (Wisconsin breast cancer dataset, SPECTF heart dataset, Parkinsons dataset, and diabetic retinopathy Debrecen dataset), and used five performance criteria (ac-curacy, precision, recall, f score, and training time) and two interpretability criteria (num-ber of rules and number of membership functions). Findings: Results showed that the TSK-based self-organizing fuzzy neural network clas-sifier, in general, outperformed the others. In terms of interpretability, DENFIS and NEF-CLASS were the best Takagi-Sugeno-Kang and Mamdani classifiers respectively. The find-ings also suggested that three classifiers: DENFIS, SOFNN, and NEFCLASS achieved a good performance-interpretability tradeoff. Originality: To the best of our knowledge, no study has compared the neuro-fuzzy tech-niques presented in this paper in terms of performance and interpretability in the medical domain. ?? 2023 The Authors. Published by Elsevier B.V. on behalf of African Institute of Mathematical Sciences / Next Einstein Initiative. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
引用
收藏
页数:20
相关论文
共 50 条
  • [31] A power transformers' predictive overload system based on a Takagi-Sugeno-Kang fuzzy model
    Ippolito, L
    Siano, P
    MELECON 2004: PROCEEDINGS OF THE 12TH IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, VOLS 1-3, 2004, : 301 - 306
  • [32] The applicability of Generic Self-Evolving Takagi-Sugeno-Kang neuro-fuzzy model in modeling rainfall-runoff and river routing
    Ashrafi, Mohammad
    Chua, Loyd H. C.
    Quek, Chai
    HYDROLOGY RESEARCH, 2019, 50 (04): : 991 - 1001
  • [33] Human Hand Gesture Classification Based on Surface Electromyography Signals by Using a Vector-Kernel Convolutional Takagi-Sugeno-Kang Neuro-fuzzy Classifier
    Lin, Cheng-Jian
    Lin, Chun-Jung
    Lin, Xin-Wei
    SENSORS AND MATERIALS, 2024, 36 (02) : 623 - 637
  • [34] Takagi-Sugeno-Kang Fuzzy Neural Network for Nonlinear Chaotic Systems and Its Utilization in Secure Medical Image Encryption
    Pham, Duc Hung
    Vu, Mai The
    MATHEMATICS, 2025, 13 (06)
  • [35] Designing monotone Takagi-Sugeno-Kang fuzzy inference systems with new joint sufficient conditions
    Kerk, Yi Wen
    Jong, Chian Haur
    Chang, Wui Lee
    Tan, Choo Jun
    Tay, Kai Meng
    Lim, Chee Peng
    FUZZY SETS AND SYSTEMS, 2025, 502
  • [36] Neuro-fuzzy Takagi Sugeno observer for fault diagnosis in wind turbines
    Perez-Perez, Esvan-Jesus
    Puig, Vicenc
    Lopez-Estrada, Francisco-Ronay
    Valencia-Palomo, Guillermo
    Santos-Ruiz, Ildeberto
    IFAC PAPERSONLINE, 2023, 56 (02): : 3522 - 3527
  • [37] A hybrid adaptive granular approach to Takagi-Sugeno-Kang fuzzy rule discovery
    Bemani-N, Alireza
    Akbarzadeh-T, M. -R.
    APPLIED SOFT COMPUTING, 2019, 81
  • [38] Takagi-sugeno-kang fuzzy controller design for nonlinear systems using the scaling gain adaptation
    Tsai P.-S.
    Wu T.-F.
    Hu N.-T.
    Chen J.-Y.
    Wu, Ter-Feng (tfwu@niu.edu.tw), 1600, Computer Society of the Republic of China (28): : 114 - 121
  • [39] Control of TCP muscles using Takagi-Sugeno-Kang fuzzy inference system
    Jafarzadeh, Mohsen
    Gans, Nicholas
    Tadesse, Yonas
    MECHATRONICS, 2018, 53 : 124 - 139
  • [40] Sensitivity analysis of Takagi-Sugeno-Kang rainfall-runoff fuzzy models
    Jacquin, A. P.
    Shamseldin, A. Y.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2009, 13 (01) : 41 - 55