Purpose: Neuro-fuzzy systems aim to combine the benefits of artificial neural networks and fuzzy inference systems: a neural network can learn patterns from data and achieves high performance, whereas a fuzzy system matches inputs and outputs using linguistic and interpretable rules. The combination of these two techniques yields models that can both perform well and provide interpretability in a fuzzy linguistic manner. Design: In this paper, the performance and interpretability of five neuro-fuzzy classifiers were evaluated (three Takagi-Sugeno-Kang (TSK) classifiers: adaptive neuro-fuzzy inference system (ANFIS), dynamic evolving neuro-fuzzy system (DENFIS), self-organizing fuzzy neu-ral network (SOFNN), and two Mamdani classifiers: hybrid fuzzy inference system (HyFIS) and neuro-fuzzy classifier (NEFCLASS)). All the empirical evaluations were over four bench-mark medical datasets (Wisconsin breast cancer dataset, SPECTF heart dataset, Parkinsons dataset, and diabetic retinopathy Debrecen dataset), and used five performance criteria (ac-curacy, precision, recall, f score, and training time) and two interpretability criteria (num-ber of rules and number of membership functions). Findings: Results showed that the TSK-based self-organizing fuzzy neural network clas-sifier, in general, outperformed the others. In terms of interpretability, DENFIS and NEF-CLASS were the best Takagi-Sugeno-Kang and Mamdani classifiers respectively. The find-ings also suggested that three classifiers: DENFIS, SOFNN, and NEFCLASS achieved a good performance-interpretability tradeoff. Originality: To the best of our knowledge, no study has compared the neuro-fuzzy tech-niques presented in this paper in terms of performance and interpretability in the medical domain. ?? 2023 The Authors. Published by Elsevier B.V. on behalf of African Institute of Mathematical Sciences / Next Einstein Initiative. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )