On the Hypergraph Connectivity of Skeleta of Polytopes

被引:0
|
作者
Hathcock, Daniel [1 ]
Yu, Josephine [2 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Polytopes; Connectivity; Skeleta; Hypergraphs;
D O I
10.1007/s00454-021-00362-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that for every d-dimensional polytope, the hypergraph whose nodes are kfaces and whose hyperedges are (k+ 1)-faces of the polytope is strongly (d-k)-vertex connected, for each 0 <= k <= d - 1.
引用
收藏
页码:593 / 596
页数:4
相关论文
共 50 条
  • [21] Inverse Perron values and connectivity of a uniform hypergraph
    Bu, Changjiang
    Li, Haifeng
    Zhou, Jiang
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (04):
  • [22] Incremental Algorithm for Minimum Cut and Edge Connectivity in Hypergraph
    Gupta, Rahul Raj
    Karmakar, Sushanta
    COMBINATORIAL ALGORITHMS, IWOCA 2019, 2019, 11638 : 237 - 250
  • [23] THE CONNECTIVITY OF HYPERGRAPH AND THE DESIGN OF FAULT-TOLERANT MULTIBUS
    陈廷槐
    康泰
    姚荣
    Science China Mathematics, 1988, (05) : 597 - 610
  • [24] THE CONNECTIVITY OF HYPERGRAPH AND THE DESIGN OF FAULT-TOLERANT MULTIBUS
    CHEN, TH
    KANG, T
    YAO, R
    SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1988, 31 (05): : 597 - 610
  • [25] Hamilton Connectivity of Convex Polytopes with Applications to Their Detour Index
    Hayat, Sakander
    Khan, Asad
    Khan, Suliman
    Liu, Jia-Bao
    COMPLEXITY, 2021, 2021
  • [26] A new proof of Balinski's theorem on the connectivity of polytopes
    Pineda-Villavicencio, Guillermo
    DISCRETE MATHEMATICS, 2021, 344 (07)
  • [27] On the embeddability of Skeleta of spheres
    Eran Nevo
    Uli Wagner
    Israel Journal of Mathematics, 2009, 174 : 381 - 402
  • [28] Augmenting the Edge-Connectivity of a Hypergraph by Adding a Multipartite Graph
    Bernath, Attila
    Grappe, Roland
    Szigeti, Zoltan
    JOURNAL OF GRAPH THEORY, 2013, 72 (03) : 291 - 312
  • [29] Hypergraph-based connectivity measures for signaling pathway topologies
    Franzese, Nicholas
    Groce, Adam
    Murali, T. M.
    Ritz, Anna
    PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (10)
  • [30] Hypergraph Laplacian Diffusion Model for Predicting Resting Brain Functional Connectivity from Structural Connectivity
    Ma, Jichao
    Yuan, Yue
    Wang, Yanjiang
    2022 16TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP2022), VOL 1, 2022, : 500 - 504