Complex hyperbolic representations of PSL2( R )

被引:0
|
作者
Stolowicz, Gonzalo Emiliano Ruiz [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Math, Lausanne, Switzerland
关键词
D O I
10.1007/s00208-024-02832-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a two-parameter family of irreducible representations of PSL2( R ) in the isometry group of the infinite-dimensional complex hyperbolic space. To this end, we introduce the notion of horospherical combination of two representations. Our family then appears as horospherical combinations of two known one-parameter families.
引用
收藏
页码:3723 / 3764
页数:42
相关论文
共 50 条
  • [31] INTRODUCTION TO PSL2 PHASE TROPICALIZATION
    Shkolnikov, Mikhail
    Petrov, Peter
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2024, 77 (10): : 1425 - 1432
  • [32] Dominating surface-group representations into PSL2(C) in the relative representation variety
    Gupta, Subhojoy
    Su, Weixu
    MANUSCRIPTA MATHEMATICA, 2023, 172 (3-4) : 1169 - 1186
  • [33] On Beauville structures for PSL2(q)
    Garion, Shelly
    JOURNAL OF GROUP THEORY, 2015, 18 (06) : 981 - 1019
  • [34] PSL2(59) is a subgroup of the Monster
    Holmes, PE
    Wilson, RA
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 69 : 141 - 152
  • [35] On surjectivity of word maps on PSL2
    Jezernik, Urban
    Sanchez, Jonatan
    JOURNAL OF ALGEBRA, 2021, 587 : 613 - 627
  • [36] Maximal cocliques in PSL2(q)
    Saunders, Jack
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (10) : 3921 - 3931
  • [37] Discrete representations of finitely generated groups into PSL(2,R)${\rm PSL}(2,\mathbb {R})$
    Liang, Hao
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, 108 (05): : 1816 - 1851
  • [38] Torsion-free genus zero congruence subgroups of PSL2(R)
    Sebbar, A
    DUKE MATHEMATICAL JOURNAL, 2001, 110 (02) : 377 - 396
  • [39] Failure of the L1 pointwise ergodic theorem for PSL2(R)
    Bowen, Lewis
    Burton, Peter
    GEOMETRIAE DEDICATA, 2020, 207 (01) : 61 - 80
  • [40] CHARACTERIZING PSL2(r) BY ITS ORDER AND THE NUMBER OF ITS SYLOW r-SUBGROUPS
    Asboei, Alireza Khalili
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (01)