The rate of convergence for sparse and low-rank quantile trace regression

被引:3
|
作者
Tan, Xiangyong [1 ,2 ]
Peng, Ling [1 ,2 ]
Xiao, Peiwen [1 ,2 ]
Liu, Qing [1 ,2 ]
Liu, Xiaohui [1 ,2 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Stat & Data Sci, Nanchang 330013, Jiangxi, Peoples R China
[2] Jiangxi Univ Finance & Econ, Key Lab Data Sci Finance & Econ, Nanchang 330013, Jiangxi, Peoples R China
关键词
Low rank; Matrix covariates; Convergence rate; Quantile trace regression; Row (column) sparsity;
D O I
10.1016/j.jco.2023.101778
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Trace regression models are widely used in applications involving panel data, images, genomic microarrays, etc., where high dimensional covariates are often involved. However, the existing research involving high-dimensional covariates focuses mainly on the condition mean model. In this paper, we extend the trace regression model to the quantile trace regression model when the parameter is a matrix of simultaneously low rank and row (column) sparsity. The convergence rate of the penalized estimator is derived under mild conditions. Simulations, as well as a real data application, are also carried out for illustration.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Sparse subspace clustering with low-rank transformation
    Xu, Gang
    Yang, Mei
    Wu, Qiufeng
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (07): : 3141 - 3154
  • [42] Parametric PDEs: sparse or low-rank approximations?
    Bachmayr, Markus
    Cohen, Albert
    Dahmen, Wolfgang
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (04) : 1661 - 1708
  • [43] Improved sparse low-rank matrix estimation
    Parekh, Ankit
    Selesnick, Ivan W.
    SIGNAL PROCESSING, 2017, 139 : 62 - 69
  • [44] Noisy Low-rank Matrix Optimization: Geometry of Local Minima and Convergence Rate
    Ma, Ziye
    Sojoudi, Somayeh
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 206, 2023, 206
  • [45] STRUCTURED SPARSE REPRESENTATION WITH LOW-RANK INTERFERENCE
    Dao, Minh
    Suo, Yuanming
    Chin, Sang
    Tran, Trac D.
    CONFERENCE RECORD OF THE 2014 FORTY-EIGHTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2014, : 106 - 110
  • [46] Low-Rank and Structured Sparse Subspace Clustering
    Zhang, Junjian
    Li, Chun-Guang
    Zhang, Honggang
    Guo, Jun
    2016 30TH ANNIVERSARY OF VISUAL COMMUNICATION AND IMAGE PROCESSING (VCIP), 2016,
  • [47] A New Representation for Data: Sparse and Low-Rank
    Sun, Jing
    Wu, Zongze
    Zeng, Deyu
    Ren, Zhigang
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 1477 - 1482
  • [48] Low-Rank Sparse Subspace for Spectral Clustering
    Zhu, Xiaofeng
    Zhang, Shichao
    Li, Yonggang
    Zhang, Jilian
    Yang, Lifeng
    Fang, Yue
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2019, 31 (08) : 1532 - 1543
  • [49] Low-Rank Sparse Coding for Image Classification
    Zhang, Tianzhu
    Ghanem, Bernard
    Liu, Si
    Xu, Changsheng
    Ahuja, Narendra
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 281 - 288
  • [50] Sparse subspace clustering with low-rank transformation
    Gang Xu
    Mei Yang
    Qiufeng Wu
    Neural Computing and Applications, 2019, 31 : 3141 - 3154