Machine Learning Applied to Datasets of Human Activity Recognition: Data Analysis in Health Care

被引:9
|
作者
Patricia, Ariza-Colpas Paola [1 ,2 ]
Enrico, Vicario [3 ]
Shariq, Butt Aziz [4 ]
Emiro, Dela Hoz-Franco [1 ]
Alberto, Pineres-Melo Marlon [5 ]
Isabel, Oviedo-Carrascal Ana [2 ]
Tariq, Muhammad Imran [4 ]
Restrepo, Johanna Karina Garcia [1 ]
Fulvio, Patara [3 ]
机构
[1] Univ Costa, Dept Comp Sci & Elect, Barranquilla, Colombia
[2] Univ Pontificia Bolivariana, Fac Engn Informat & Commun Technol, Medellin, Colombia
[3] Univ Florence, Dept Informat Engn, Florence, Italy
[4] Univ Lahore, Dept Comp Sci & IT, Lahore, Pakistan
[5] Univ Norte, Dept Syst Engn, Barranquilla, Colombia
关键词
HAR; smart environment; classification techniques; vanKasteren dataset; CASAS Kyoto; CASAS Aruba; SMART; PREDICTION; MODELS;
D O I
10.2174/1573405618666220104114814
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background In order to remain active and productive, older adults with poor health require a combination of advanced methods of visual monitoring, optimization, pattern recognition, and learning, which provide safe and comfortable environments and serve as a tool to facilitate the work of family members and workers, both at home and in geriatric homes. Therefore, there is a need to develop technologies to provide these adults autonomy in indoor environments. Objective This study aimed to generate a prediction model of daily living activities through classification techniques and selection of characteristics in order to contribute to the development in this area of knowledge, especially in the field of health. Moreover, the study aimed to accurately monitor the activities of the elderly or people with disabilities. Technological developments allow predictive analysis of daily life activities, contributing to the identification of patterns in advance in order to improve the quality of life of the elderly. Methods The vanKasteren, CASAS Kyoto, and CASAS Aruba datasets were used to validate a predictive model capable of supporting the identification of activities in indoor environments. These datasets have some variation in terms of occupation and the number of daily living activities to be identified. Results Twelve classifiers were implemented, among which the following stand out: Classification via Regression, OneR, Attribute Selected, J48, Random SubSpace, RandomForest, RandomCommittee, Bagging, Random Tree, JRip, LMT, and REP Tree. The classifiers that show better results when identifying daily life activities are analyzed in the light of precision and recall quality metrics. For this specific experimentation, the Classification via Regression and OneR classifiers obtain the best results. Conclusion The efficiency of the predictive model based on classification is concluded, showing the results of the two classifiers, i.e., Classification via Regression and OneR, with quality metrics higher than 90% even when the datasets vary in occupation and number of activities.
引用
收藏
页码:46 / 64
页数:19
相关论文
共 50 条
  • [31] Combining Public Human Activity Recognition Datasets to Mitigate Labeled Data Scarcity
    Presotto, Riccardo
    Ek, Sannara
    Civitarese, Gabriele
    Portet, Francois
    Lalanda, Philippe
    Bettini, Claudio
    2023 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING, SMARTCOMP, 2023, : 33 - 40
  • [32] Transfer Learning for Human Activity Recognition in Federated Learning on Android Smartphones with Highly Imbalanced Datasets
    Osorio, Alexandre Freire
    Grassiotto, Fabio
    Moraes, Saulo Aldighieri
    Munoz, Amparo
    Gomes Neto, Sildolfo Francisco
    Gibaut, Wandemberg
    2024 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS, ISCC 2024, 2024,
  • [33] An evolving machine learning method for human activity recognition systems
    Javier Andreu
    Plamen Angelov
    Journal of Ambient Intelligence and Humanized Computing, 2013, 4 : 195 - 206
  • [34] An evolving machine learning method for human activity recognition systems
    Andreu, Javier
    Angelov, Plamen
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2013, 4 (02) : 195 - 206
  • [35] Performance Comparison of Machine Learning Algorithms for Human Activity Recognition
    Bostan, Berkan
    Senol, Yavuz
    Ascioglu, Gokmen
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,
  • [36] Towards a Modular Machine Learning Architecture for Human Activity Recognition
    Schroth, Marc
    Birkenmaier, Dennis
    Stork, Wilhelm
    2024 IEEE SENSORS APPLICATIONS SYMPOSIUM, SAS 2024, 2024,
  • [37] Recognition and Classification of Human Activity By Posture Sensing and Machine Learning
    Yang, Fan
    Wu, Yuchuan
    AUTOMATION EQUIPMENT AND SYSTEMS, PTS 1-4, 2012, 468-471 : 2916 - 2919
  • [38] Employment of Ensemble Machine Learning Methods for Human Activity Recognition
    Hasan, Tasnimul
    Bin Karim, Md. Faiyed
    Mahadi, Mahin Khan
    Nishat, Mirza Muntasir
    Faisal, Fahim
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [39] Deep Learning and Machine Learning Techniques Applied to Speaker Identification on Small Datasets
    Manfron, Enrico
    Teixeira, Joao Paulo
    Minetto, Rodrigo
    OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT II, OL2A 2023, 2024, 1982 : 195 - 210
  • [40] Smartphone Data Analysis for Human Activity Recognition
    Concone, Federico
    Gaglio, Salvatore
    Lo Re, Giuseppe
    Morana, Marco
    AI*IA 2017 ADVANCES IN ARTIFICIAL INTELLIGENCE, 2017, 10640 : 58 - 71