An inertial Mann algorithm for nonexpansive mappings on Hadamard manifolds

被引:6
|
作者
Khammahawong, Konrawut [1 ]
Chaipunya, Parin [2 ]
Kumam, Poom [3 ,4 ]
机构
[1] Rajamangala Univ Technol Thanyaburi, Fac Sci & Technol, Appl Math Sci & Engn Res Unit AMSERU, Dept Math & Comp Sci,Program Appl Stat, Pathum Thani 12110, Thailand
[2] King Mongkuts Univ Technol Thonburi, Fixed Point Theory & Applicat Res Grp, Ctr Excellence Theoret & Computat Sci TaCS CoE, NCAO Res Ctr,Fac Sci, Bangkok 10140, Thailand
[3] King Mongkuts Univ Technol Thonburi, Fac Sci, Ctr Excellence Theoret & Computat Sci TaCS CoE, Bangkok 10140, Thailand
[4] King Mongkuts Univ Technol Thonburi, Fac Sci, KMUTT Fixed Point Res Lab, Fixed Point Lab,Sci Lab Bldg,Dept Math, Bangkok 10140, Thailand
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 01期
关键词
fixed point problem; Hadamard manifold; inertial Mann method; nonexpansive mapping; MAXIMAL MONOTONE-OPERATORS; PROXIMAL POINT ALGORITHM; EQUILIBRIUM PROBLEMS; INCLUSION PROBLEMS; ITERATIVE ALGORITHMS; RIEMANNIAN-MANIFOLDS; VECTOR-FIELDS; FIXED-POINTS; SINGULARITIES; CONVERGENCE;
D O I
10.3934/math.2023108
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An inertial Mann algorithm will be presented in this article with the purpose of approximating a fixed point of a nonexpansive mapping on a Hadamard manifold. Any sequence that is generated by using the proposed approach, under suitable assumptions, converges to fixed points of nonexpansive mappings. The proposed method is also dedicated to solving inclusion and equilibrium problems. Lastly, we give a number of computational experiments that show how well the inertial Mann algorithm works and how it compares to other methods.
引用
收藏
页码:2093 / 2116
页数:24
相关论文
共 50 条
  • [41] Krasnoselskii-Mann Viscosity Approximation Method for Nonexpansive Mappings
    Altwaijry, Najla
    Aldhaban, Tahani
    Chebbi, Souhail
    Xu, Hong-Kun
    MATHEMATICS, 2020, 8 (07)
  • [42] FIBONACCI-MANN ITERATION FOR MONOTONE ASYMPTOTICALLY NONEXPANSIVE MAPPINGS
    Alfuraidan, M. R.
    Khamsi, M. A.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (02) : 307 - 316
  • [43] The Fibonacci–Mann iteration for monotone asymptotically pointwise nonexpansive mappings
    Buthinah A. Bin Dehaish
    Journal of Fixed Point Theory and Applications, 2019, 21
  • [44] RATE OF CONVERGENCE OF MODIFIED MANN ITERATION FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS
    Shehu, Yekini
    FIXED POINT THEORY, 2021, 22 (02): : 871 - 880
  • [45] Some convergence theorems of the Mann iteration for monotone α-nonexpansive mappings
    Song, Yisheng
    Promluang, Khanittha
    Kumam, Poom
    Cho, Yeol Je
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 287 : 74 - 82
  • [46] AN INERTIAL ITERATION FOR AN INFINITE FAMILY OF NONEXPANSIVE MAPPINGS AND A BIFUNCTION
    Liu, Xinle
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2024, 25 (01) : 169 - 180
  • [47] Viscosity Explicit Midpoint Methods for Nonexpansive Mappings in Hadamard Spaces
    Preechasilp, Pakkapon
    FILOMAT, 2020, 34 (04) : 1347 - 1357
  • [48] A modified iteration for total asymptotically nonexpansive mappings in Hadamard spaces
    Uddin, Izhar
    Khatoon, Sabiya
    Mlaiki, Nabil
    Abdeljawad, Thabet
    AIMS MATHEMATICS, 2021, 6 (05): : 4758 - 4770
  • [49] Approximation of Fixed Points of Nonexpansive Mappings by Modified Krasnoselski-Mann Iterative Algorithm in Banach Space
    Shehu, Yekini
    Ugwunnadi, G. C.
    THAI JOURNAL OF MATHEMATICS, 2015, 13 (02): : 405 - 419
  • [50] A MODIFIED INERTIAL VISCOSITY ALGORITHM FOR AN INFINITE FAMILY OF NONEXPANSIVE MAPPINGS AND ITS APPLICATION TO IMAGE RESTORATION
    Altiparmak, Ebru
    Karahan, Ibrahim
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2024, 20 (02) : 453 - 477