On the Cauchy problem for the generalized double dispersion equation with logarithmic nonlinearity

被引:0
|
作者
Garti, Ines [2 ]
Berbiche, Mohamed [1 ]
机构
[1] Biskra Univ, Dept Math, Lab Math Anal Probabil & Optimizat, POB 145, Biskra 07000, Algeria
[2] Biskra Univ, Dept Math, Lab Math Anal Probabil & Optimizat, POB 145, Biskra 07000, Algeria
关键词
Cauchy problem; stable set and unstable set; existence of global solution; nonexistence; GLOBAL EXISTENCE; SOLITARY WAVES; BLOW-UP; WELL-POSEDNESS; BOUSSINESQ; NONEXISTENCE; INSTABILITY;
D O I
10.1515/anly-2023-0072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the global existence and finite time blow-up of solution for the Cauchy problem of one-dimensional fifth-order Boussinesq equation with logarithmic nonlinearity. Fist we prove the existence and uniqueness of local mild solutions in the energy space by means of the contraction mapping principle. Further under some restriction on the initial data, we establish the results on existence and uniqueness of global solutions and finite time blow-up of solutions by using the potential well method. Moreover, the sufficient and necessary conditions of global existence and finite time blow-up of solutions are given.
引用
收藏
页码:121 / 145
页数:25
相关论文
共 50 条
  • [31] Solution of Cauchy Problem for the Generalized Gellerstedt Equation
    A. S. Berdyshev
    A. Hasanov
    Zh. A. Abdiramanov
    Lobachevskii Journal of Mathematics, 2020, 41 : 1762 - 1771
  • [32] Cauchy problem for a damped generalized IMBq equation
    Chen, Guowang
    Rui, Weifang
    Chen, Xiangying
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (05)
  • [33] Cauchy's problem for a "generalized" wave equation
    Gogoladze, V
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1934, 2 : 166 - 169
  • [35] Solution of Cauchy Problem for the Generalized Gellerstedt Equation
    Berdyshev, A. S.
    Hasanov, A.
    Abdiramanov, Zh. A.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (09) : 1762 - 1771
  • [36] On the Cauchy problem for a generalized nonlinear heat equation
    Baaske, Franka
    Schmeisser, Hans-Juergen
    GEORGIAN MATHEMATICAL JOURNAL, 2018, 25 (02) : 169 - 180
  • [37] Cauchy Problem for a Generalized Nonlinear Liouville Equation
    Kharibegashvili, S. S.
    Dzhokhadze, O. M.
    DIFFERENTIAL EQUATIONS, 2011, 47 (12) : 1763 - 1775
  • [38] Gaussian solitary waves to Boussinesq equation with dual dispersion and logarithmic nonlinearity
    Biswas, Anjan
    Ekici, Mehmet
    Sonmezoglu, Abdullah
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2018, 23 (06): : 942 - 950
  • [39] On the Cauchy Problem of Fractional Schrodinger Equation with Hartree Type Nonlinearity
    Cho, Yonggeun
    Hajaiej, Hichem
    Hwang, Gyeongha
    Ozawa, Tohru
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2013, 56 (02): : 193 - 224
  • [40] THE CAUCHY PROBLEM FOR HEAT EQUATION WITH FRACTIONAL LAPLACIAN AND EXPONENTIAL NONLINEARITY
    Fino, Ahmad Z.
    Kirane, Mokhtar
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (07) : 3625 - 3650