A strict complementarity approach to error bound and sensitivity of solution of conic programs

被引:1
|
作者
Ding, Lijun [1 ]
Udell, Madeleine [2 ]
机构
[1] Univ Wisconsin, Wisconsin Inst Discovery, Madison, WI 53715 USA
[2] Stanford Univ, Management Sci & Engn, Stanford, CA 94305 USA
基金
加拿大健康研究院;
关键词
Conic program; Strict complementarity; Error bound;
D O I
10.1007/s11590-022-01942-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we provide an elementary, geometric, and unified framework to analyze conic programs that we call the strict complementarity approach. This framework allows us to establish error bounds and quantify the sensitivity of the solution. The framework uses three classical ideas from convex geometry and linear algebra: linear regularity of convex sets, facial reduction, and orthogonal decomposition. We show how to use this framework to derive error bounds for linear programming, second order cone programming, and semidefinite programming.
引用
收藏
页码:1551 / 1574
页数:24
相关论文
共 50 条
  • [21] SOLUTION POINT DIFFERENTIABILITY WITHOUT STRICT COMPLEMENTARITY IN NONLINEAR-PROGRAMMING
    JITTORNTRUM, K
    MATHEMATICAL PROGRAMMING STUDY, 1982, 21 (JUN): : 127 - 138
  • [22] Mathematical programs with complementarity constraints: Stationarity, optimality, and sensitivity
    Scheel, H
    Scholtes, S
    MATHEMATICS OF OPERATIONS RESEARCH, 2000, 25 (01) : 1 - 22
  • [23] New global error bound for extended linear complementarity problems
    Hongchun Sun
    Min Sun
    Yiju Wang
    Journal of Inequalities and Applications, 2018
  • [24] New global error bound for extended linear complementarity problems
    Sun, Hongchun
    Sun, Min
    Wang, Yiju
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [25] On the Bound of the Solution Set for the Vertical Tensor Complementarity Problem
    Wang, Hai-Ying
    Fu, Zu-Feng
    Wu, Shi-Liang
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2025, 204 (01)
  • [26] On the global solution of linear programs with linear complementarity constraints
    Hu, Jing
    Mitchell, John E.
    Pang, Jong-Shi
    Bennett, Kristin P.
    Kunapuli, Gautam
    SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (01) : 445 - 471
  • [27] Convergence and error bound for perturbation of linear programs
    Tseng, P
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1999, 13 (1-3) : 221 - 230
  • [28] Convergence and Error Bound for Perturbation of Linear Programs
    Paul Tseng
    Computational Optimization and Applications, 1999, 13 : 221 - 230
  • [29] Error Bounds for the Solution Sets of Quadratic Complementarity Problems
    Shenglong Hu
    Jie Wang
    Zheng-Hai Huang
    Journal of Optimization Theory and Applications, 2018, 179 : 983 - 1000
  • [30] Error Bounds for the Solution Sets of Quadratic Complementarity Problems
    Hu, Shenglong
    Wang, Jie
    Huang, Zheng-Hai
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 179 (03) : 983 - 1000