A strict complementarity approach to error bound and sensitivity of solution of conic programs

被引:1
|
作者
Ding, Lijun [1 ]
Udell, Madeleine [2 ]
机构
[1] Univ Wisconsin, Wisconsin Inst Discovery, Madison, WI 53715 USA
[2] Stanford Univ, Management Sci & Engn, Stanford, CA 94305 USA
基金
加拿大健康研究院;
关键词
Conic program; Strict complementarity; Error bound;
D O I
10.1007/s11590-022-01942-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we provide an elementary, geometric, and unified framework to analyze conic programs that we call the strict complementarity approach. This framework allows us to establish error bounds and quantify the sensitivity of the solution. The framework uses three classical ideas from convex geometry and linear algebra: linear regularity of convex sets, facial reduction, and orthogonal decomposition. We show how to use this framework to derive error bounds for linear programming, second order cone programming, and semidefinite programming.
引用
收藏
页码:1551 / 1574
页数:24
相关论文
共 50 条
  • [1] A strict complementarity approach to error bound and sensitivity of solution of conic programs
    Lijun Ding
    Madeleine Udell
    Optimization Letters, 2023, 17 : 1551 - 1574
  • [2] Quadratic convergence to the optimal solution of second-order conic optimization without strict complementarity
    Mohammad-Nezhad, Ali
    Terlaky, Tamas
    OPTIMIZATION METHODS & SOFTWARE, 2019, 34 (05): : 960 - 990
  • [3] Error Bound for Conic Inequality
    Zheng X.Y.
    Ng K.F.
    Vietnam Journal of Mathematics, 2014, 42 (4) : 509 - 519
  • [4] HOLDER ERROR BOUND FOR CONIC INEQUALITY
    Zhu, Jiangxing
    Hu, Chunhai
    He, Qinghai
    Ouyang, Wei
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (02) : 295 - 305
  • [5] Error Bound Estimation and The Solution Structure for the Generalized Linear Complementarity Problem
    Sun, Hongchun
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 2, 2009, : 248 - 252
  • [6] Exact computation of an error bound for the balanced linear complementarity problem with unique solution
    Jean-Pierre Dussault
    Jean Charles Gilbert
    Mathematical Programming, 2023, 199 : 1221 - 1238
  • [7] Error Bound for Conic Inequality in Hilbert Spaces
    Zhu, Jiangxing
    He, Qinghai
    Lin, Jinchuan
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [8] The Solution Set Characterization and Error Bound for the Extended Mixed Linear Complementarity Problem
    Sun, Hongchun
    Wang, Yiju
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [9] Exact computation of an error bound for the balanced linear complementarity problem with unique solution
    Dussault, Jean-Pierre
    Gilbert, Jean Charles
    MATHEMATICAL PROGRAMMING, 2023, 199 (1-2) : 1221 - 1238
  • [10] Error Bound of the Stochastic Linear Complementarity
    Jiao, Shenghua
    Ren, Qingjun
    PROCEEDINGS OF THE 3D INTERNATIONAL CONFERENCE ON APPLIED SOCIAL SCIENCE RESEARCH, 2016, 105 : 605 - 608