Bio-scaffold for bone tissue engineering with focus on bacterial cellulose, biological materials for hydroxyapatite synthesis and growth factors

被引:29
|
作者
Boyetey, Mark-Jefferson Buer [1 ]
Torgbo, Selorm [1 ]
Sukyai, Prakit [1 ,2 ]
机构
[1] Kasetsart Univ, Cellulose Future Mat & Technol Special Res Unit, Bangkok 10900, Thailand
[2] Kasetsart Univ, Inst Adv Studies, Ctr Adv Studies Agr & Food CASAF, Bangkok 10900, Thailand
关键词
Bacterial cellulose; Biogenic sources of hydroxyapatite; Bone tissue engineering; Fibroblast growth factor; Polydopamine; ALPHA-TRICALCIUM PHOSPHATE; MESENCHYMAL STEM-CELLS; PLATELET-RICH PLASMA; COMPOSITE SCAFFOLDS; NANO-HYDROXYAPATITE; IN-VITRO; POTENTIAL SCAFFOLD; FACTOR DELIVERY; SURFACE; REGENERATION;
D O I
10.1016/j.eurpolymj.2023.112168
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Bio-based biomaterials, are created using renewable biomass from sources such as plants, animals and microorganisms. Cellulose is a renewable biopolymer and its usage for bone tissue regeneration has advanced significantly. Bacterial cellulose (BC), which is derived from microorganisms is currently one of the most considered for bone tissue engineering (BTE). However, its performance is limited by lack of bioactivity to stimulate and guide cell differentiation. The introduction of bioceramics into the matrix of BC, enhances its mechanical properties and bioactivity. Hydroxyapatite (HA) is one of the most widely used bioceramics in BTE due to its bioactivity and similarity to the natural bone mineral. The use of growth factors (GFs) has proven to further improve the bioactivity of materials in BTE. This review summarizes the biosynthesis of BC, its modification and applications in BTE. Also, the use of biological products such as fish waste, shells, plants, animals and algae, which are rich in minerals for HA and BTE. GFs and immobilization strategies for their delivery to maintain their bioactivity, were discussed. The development in the application of modern additive manufacturing technology such as 3D bioprinting is paving the way toward the design of tailor-made materials for tissue engineering.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Facile synthesis of hydroxyapatite from bovine bone and gelatin/chitosan-hydroxyapatite scaffold for potential tissue engineering application
    Nguyen Thi Hong Anh
    Tra Phuong Trinh
    Le Van Tan
    Nguyen Thi Mai Tho
    Nguyen Van Cuong
    VIETNAM JOURNAL OF CHEMISTRY, 2022, 60 (02) : 198 - 205
  • [22] Production of hydroxyapatite–bacterial cellulose composite scaffolds with enhanced pore diameters for bone tissue engineering applications
    Ece Bayir
    Eyup Bilgi
    E. Esin Hames
    Aylin Sendemir
    Cellulose, 2019, 26 : 9803 - 9817
  • [23] Modification and evaluation of micro-nano structured porous bacterial cellulose scaffold for bone tissue engineering
    Huang, Yan
    Wang, Jing
    Yang, Fei
    Shao, Yingnan
    Zhang, Xiaoling
    Dai, Kerong
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 75 : 1034 - 1041
  • [24] Bacterial cellulose-reinforced boron-doped hydroxyapatite/gelatin scaffolds for bone tissue engineering
    Atila, Deniz
    Karatas, Ayten
    Evcin, Atilla
    Keskin, Dilek
    Tezcaner, Aysen
    CELLULOSE, 2019, 26 (18) : 9765 - 9785
  • [25] Bacterial cellulose-reinforced boron-doped hydroxyapatite/gelatin scaffolds for bone tissue engineering
    Deniz Atila
    Ayten Karataş
    Atilla Evcin
    Dilek Keskin
    Ayşen Tezcaner
    Cellulose, 2019, 26 : 9765 - 9785
  • [26] Synthesis and characterization of a laminated hydroxyapatite/gelatin nanocomposite scaffold with controlled pore structure for bone tissue engineering
    Azami, Mahmoud
    Samadikuchaksaraei, Ali
    Poursamar, Seyed Ali
    INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, 2010, 33 (02): : 86 - 95
  • [27] Production of hydroxyapatite-bacterial cellulose composite scaffolds with enhanced pore diameters for bone tissue engineering applications
    Bayir, Ece
    Bilgi, Eyup
    Hames, E. Esin
    Sendemir, Aylin
    CELLULOSE, 2019, 26 (18) : 9803 - 9817
  • [28] Hybrid materials for bone tissue engineering from biomimetic growth of hydroxiapatite on cellulose nanowhiskers
    Fragal, Elizangela
    Cellet, Thelma S. P.
    Fragal, Vanessa H.
    Companhoni, Mychelle V. P.
    Ueda-Nakamura, Tania
    Muniz, Edvani C.
    Silva, Rafael
    Rubira, Adley F.
    CARBOHYDRATE POLYMERS, 2016, 152 : 734 - 746
  • [29] Facile synthesis of hydroxyapatite nanoparticles mimicking biological apatite from eggshells for bone-tissue engineering
    Nguyen Kim Nga
    Nguyen Thi Thuy Chau
    Pham Hung Viet
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2018, 172 : 769 - 778
  • [30] Synthesis, characterization and in-vitro behavior of natural chitosan-hydroxyapatite-diopside nanocomposite scaffold for bone tissue engineering
    Shemshad, Sepideh
    Kamali, Samaneh
    Khavandi, Alireza
    Azari, Shahram
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2019, 68 (09) : 516 - 526