A Robust Keyframe-Based Visual SLAM for RGB-D Cameras in Challenging Scenarios

被引:2
|
作者
Lin, Xi [1 ,2 ]
Huang, Yewei [1 ]
Sun, Dingyi [2 ,3 ]
Lin, Tzu-Yuan [2 ]
Englot, Brendan [1 ]
Eustice, Ryan M. [2 ]
Ghaffari, Maani [2 ]
机构
[1] Stevens Inst Technol, Dept Mech Engn, Hoboken, NJ 07030 USA
[2] Univ Michigan, Dept Robot, Ann Arbor, MI 48109 USA
[3] Simon Fraser Univ, Sch Comp Sci, Burnaby, BC V5A 1S6, Canada
关键词
Simultaneous localization and mapping; Feature extraction; Odometry; Optimization; Manganese; Cameras; Point cloud compression; Indoor environment; Visual SLAM; RGB-D camera; indoor environments; RECONSTRUCTION;
D O I
10.1109/ACCESS.2023.3312062
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The accuracy of RGB-D SLAM systems is sensitive to the image quality, and can be significantly compromised in adverse situations such as when input images are blurry, lacking in texture features, or overexposed. In this paper, based on Continuous Direct Sparse Visual Odometry (CVO), we present a novel Keyframe-based CVO (KF-CVO) with intrinsic keyframe selection mechanism that effectively reduces the tracking error. We then extend KF-CVO to a RGB-D SLAM system, CVO SLAM, equipped with place recognition via ORB features, and joint bundle adjustment & pose graph optimization. Comprehensive evaluations on publicly available benchmarks show that the proposed RGB-D SLAM system achieves a higher success rate than current state-of-the-art-methods. The proposed system is more robust to difficult benchmark sequences than current state-of-the-art methods, where adverse situations such as rapid camera motions, environments lacking in texture, and overexposed images when strong illumination exists.
引用
收藏
页码:97239 / 97249
页数:11
相关论文
共 50 条
  • [31] RGB-D Based Visual SLAM Algorithm for Indoor Crowd Environment
    Jianfeng Li
    Juan Dai
    Zhong Su
    Cui Zhu
    Journal of Intelligent & Robotic Systems, 2024, 110
  • [32] An ORB Based Visual SLAM System by RGB-D Camera of LeTV
    Fan, Yang
    Ming, Li
    2017 9TH INTERNATIONAL CONFERENCE ON ADVANCED INFOCOMM TECHNOLOGY (ICAIT 2017), 2017, : 406 - 410
  • [33] Optimization Algorithm of RGB-D SLAM Visual Odometry based on Triangulation
    Dong J.
    Jiang Y.
    Han Z.
    Dong, Jingwei (djw@hrbust.edu.cn), 1600, Totem Publishers Ltd (16): : 438 - 445
  • [34] RGB-D Based Visual SLAM Algorithm for Indoor Crowd Environment
    Li, Jianfeng
    Dai, Juan
    Su, Zhong
    Zhu, Cui
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2024, 110 (01)
  • [35] DNA-SLAM: Dense Noise Aware SLAM for ToF RGB-D Cameras
    Wasenmueller, Oliver
    Ansari, Mohammad Dawud
    Stricker, Didier
    COMPUTER VISION - ACCV 2016 WORKSHOPS, PT I, 2017, 10116 : 613 - 629
  • [36] Robust Intrinsic and Extrinsic Calibration of RGB-D Cameras
    Basso, Filippo
    Menegatti, Emanuele
    Pretto, Alberto
    IEEE TRANSACTIONS ON ROBOTICS, 2018, 34 (05) : 1315 - 1332
  • [37] Robust Texture Mapping Using RGB-D Cameras
    Oliveira, Miguel
    Lim, Gi-Hyun
    Madeira, Tiago
    Dias, Paulo
    Santos, Vitor
    SENSORS, 2021, 21 (09)
  • [38] 6D Visual SLAM for RGB-D Sensors
    Endres, Felix
    Hess, Juergen
    Engelhard, Nikolas
    Sturm, Juergen
    Burgard, Wolfram
    AT-AUTOMATISIERUNGSTECHNIK, 2012, 60 (05) : 270 - 278
  • [39] Handling Pure Camera Rotation in Keyframe-Based SLAM
    Pirchheim, Christian
    Schmalstieg, Dieter
    Reitmayr, Gerhard
    2013 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR) - SCIENCE AND TECHNOLOGY, 2013, : 229 - 238
  • [40] VISUAL ODOMETRY FOR RGB-D CAMERAS FOR DYNAMIC SCENES
    Azartash, Haleh
    Lee, Kyoung-Rok
    Nguyen, Truong Q.
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,