Polarization-controlled volatile ferroelectric and capacitive switching in Sn2P2S6

被引:4
|
作者
Neumayer, Sabine M. [1 ]
Ievlev, Anton, V [1 ]
Tselev, Alexander [2 ,3 ]
Basun, Sergey A. [4 ,5 ]
Conner, Benjamin S. [6 ,7 ]
Susner, Michael A. [4 ]
Maksymovych, Petro [1 ]
机构
[1] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[2] Univ Aveiro, CICECO Aveiro Inst Mat, P-3810193 Aveiro, Portugal
[3] Univ Aveiro, Dept Phys, P-3810193 Aveiro, Portugal
[4] AF Res Lab, Mat & Mfg Directorate, 2179 12th St, Wright Patterson AFB, OH 45433 USA
[5] Azimuth Corp, 4027 Colonel Glenn Highway,Suite 230, Beavercreek, OH 45431 USA
[6] AF Res Lab, Sensors Directorate, 2241 Avion Circle, Wright Patterson AFB, OH 45433 USA
[7] CNR, Washington, DC 20001 USA
来源
关键词
domain walls; neuromorphic; tunable; ferroelectric; scanning microwave impedance microscopy; PHASE-TRANSITION;
D O I
10.1088/2634-4386/acb37e
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Smart electronic circuits that support neuromorphic computing on the hardware level necessitate materials with memristive, memcapacitive, and neuromorphic- like functional properties; in short, the electronic response must depend on the voltage history, thus enabling learning algorithms. Here we demonstrate volatile ferroelectric switching of Sn2P2S6 at room temperature and see that initial polarization orientation strongly determines the properties of polarization switching. In particular, polarization switching hysteresis is strongly imprinted by the original polarization state, shifting the regions of non-linearity toward zero-bias. As a corollary, polarization switching also enables effective capacitive switching, approaching the sought-after regime of memcapacitance. Landau-Ginzburg-Devonshire simulations demonstrate that one mechanism by which polarization can control the shape of the hysteresis loop is the existence of charged domain walls (DWs) decorating the periphery of the repolarization nucleus. These walls oppose the growth of the switched domain and favor back-switching, thus creating a scenario of controlled volatile ferroelectric switching. Although the measurements were carried out with single crystals, prospectively volatile polarization switching can be tuned by tailoring sample thickness, DW mobility and electric fields, paving way to non-linear dielectric properties for smart electronic circuits.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] STABILITY OF POLARIZED CONDITION OF FERROELECTRIC-FILMS OF SN2P2S6
    ROGACH, ED
    ARNAUTOVA, EA
    SAVCHENKO, EA
    KORCHAGINA, NA
    BARINOV, LP
    ZHURNAL TEKHNICHESKOI FIZIKI, 1991, 61 (09): : 164 - 167
  • [32] MICROWAVE STUDY OF THE SOFT FERROELECTRIC MODE IN SN2P2S6 CRYSTALS
    GRIGAS, J
    KALESINSKAS, V
    LAPINSKAS, S
    GURZAN, MI
    PHASE TRANSITIONS, 1988, 12 (03) : 263 - 274
  • [33] ANGLE DISPERSION OF SOFT PHONONS IN UNIAXIAL SN2P2S6 FERROELECTRIC
    GOMONNAI, AV
    VYSOCHANSKII, YM
    SLIVKA, VY
    FIZIKA TVERDOGO TELA, 1982, 24 (04): : 1068 - 1073
  • [34] Electronic and spatial structure of nanoclusters of Sn2P2S6 ferroelectric crystals
    A. I. Chobal’
    I. M. Rizak
    A. G. Grebenyuk
    V. M. Rizak
    Physics of the Solid State, 2010, 52 : 1468 - 1474
  • [35] Reflection of light by domain walls in the uniaxial ferroelectric Sn2P2S6
    A. A. Grabar
    Technical Physics Letters, 1997, 23 : 635 - 637
  • [36] Modeling of the lattice dynamics and elastic properties of the Sn2P2S6 ferroelectric
    Grabar, AA
    Evich, RM
    Vysochanskii, YM
    CRYSTALLOGRAPHY REPORTS, 2000, 45 (05) : 804 - 807
  • [38] High pressure studies of the phase transition in the ferroelectric Sn2P2S6
    Dzhavadov, Leonid N.
    Ryzhov, Valentin N.
    SOLID STATE COMMUNICATIONS, 2016, 236 : 23 - 26
  • [39] Thermal diffusivity and critical behaviour of uniaxial ferroelectric Sn2P2S6
    Oleaga, A.
    Salazar, A.
    Massot, M.
    Vysochanskii, Yu. M.
    THERMOCHIMICA ACTA, 2007, 459 (1-2) : 73 - 79
  • [40] Electronic and spatial structure of nanoclusters of Sn2P2S6 ferroelectric crystals
    Chobal, A. I.
    Rizak, I. M.
    Grebenyuk, A. G.
    Rizak, V. M.
    PHYSICS OF THE SOLID STATE, 2010, 52 (07) : 1468 - 1474