Mitigation of blast loading through blast-obstacle interaction

被引:5
|
作者
Alshammari, Omar Ghareeb [1 ,2 ]
Isaac, Obed Samuelraj [1 ]
Clarke, Samuel David [1 ]
Rigby, Samuel Edward [1 ]
机构
[1] Univ Sheffield, Dept Civil & Struct Engn, Mappin St, Sheffield S1 3JD, S Yorkshire, England
[2] Univ Hail, Coll Engn, Dept Civil Engn, Hail, Saudi Arabia
基金
英国工程与自然科学研究理事会;
关键词
Blast wave interaction; blast wave mitigation; artificial neural network; machine learning; equivalent energy impulse; blast wave interference; WAVE-PROPAGATION; SHOCK DYNAMICS; REFLECTION; PROTECTION; SIMULATION; CYLINDERS;
D O I
10.1177/20414196221115869
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Obstructing the passage of blast waves is an effective method of mitigating blast pressures downstream of the obstacle. To this end, the interaction between a blast wave and a simplified structural shape, such as a cylinder, has been widely investigated to understand the complex flow pattern that ensues around the obstacle. The patterns include the interference zones of the incident wave, the diffracted wave, and other secondary waves in the downstream region. Such zones are responsible for causing significant modifications to the blast wave parameters. This research aims to identify and study the factors that serve to mitigate the resulting blast loads downstream of a cylindrical obstacle - both on the ground, and on a rigid wall target that the obstacle is aiming to protect. Inputs from this numerical study are also used to develop a fast-running predictive method based on an artificial neural network (ANN) model. It was found that the size of the cylinder, the strength of the blast wave, the position of the cylindrical obstruction, and the target length, all have remarkable effects on the development of the complex flow-field downstream, and on the impulse mitigation on a reflective target. A number of key mitigation mechanisms are identified, namely shadowing and interference, and their origins and significance are discussed. An ANN model trained using scaled input parameters could successfully predict impulse values on such a reflective target. Using this model to predict the response of previously unseen configurations (for the ANN) gave excellent correlation, thereby demonstrating the high fidelity of this fast-running tool, and its ability to predict the effectiveness of various wave-cylinder interactions in mitigating blast loading.
引用
收藏
页码:357 / 389
页数:33
相关论文
共 50 条
  • [21] NUMERICAL STUDY OF HEAD/HELMET INTERACTION DUE TO BLAST LOADING
    Zhang, Timothy G.
    Satapathy, Sikhanda S.
    Dagro, Amy M.
    Mckee, Philip J.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2013, VOL 3A, 2014,
  • [22] Interaction of hybrid pressurised cylindrical structures subjected to blast loading
    Mohamed, G.
    Soutis, C.
    Hodzic, A.
    Craveur, J. C.
    Pormente, S.
    PLASTICS RUBBER AND COMPOSITES, 2012, 41 (02) : 69 - 76
  • [23] Performance Evaluation of a Blast Resistant Door under Blast Loading
    Kim, Tae Dong
    Kim, Jin Ho
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2020, 44 (06) : 399 - 404
  • [24] Experimental investigation of blast wave pressure mitigation by water droplets interaction
    Tamba, Takahiro
    Sugiyama, Yuta
    Ohtani, Kiyonobu
    Wakabayashi, Kunihiko
    SCIENCE AND TECHNOLOGY OF ENERGETIC MATERIALS, 2020, 81 (01) : 29 - 32
  • [25] A Critical Review of Blast Wave Parameters and Approaches for Blast Load Mitigation
    P. A. Shirbhate
    M. D. Goel
    Archives of Computational Methods in Engineering, 2021, 28 : 1713 - 1730
  • [26] Field Testing of Fence Type Blast Wall for Blast Load Mitigation
    Hao, Yifei
    Hao, Hong
    Shi, Yanchao
    Wang, Zhongqi
    Zong, Ruiqing
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2017, 17 (09)
  • [27] A Critical Review of Blast Wave Parameters and Approaches for Blast Load Mitigation
    Shirbhate, P. A.
    Goel, M. D.
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2021, 28 (03) : 1713 - 1730
  • [28] Numerical study of fence type blast walls for blast load mitigation
    Jin, Ming
    Hao, Yifei
    Hao, Hong
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2019, 131 : 238 - 255
  • [29] Mitigation of blast effects through novel energy-dissipating connectors
    Seica, Michael, V
    Packer, Jeffrey A.
    Walker, Martin G.
    Gow, Matthew, I
    INTERNATIONAL JOURNAL OF PROTECTIVE STRUCTURES, 2022, 13 (02) : 236 - 272
  • [30] Blast loading on petrochemical buildings
    Forbes Engineering, Inc., Liberty Corner, NJ 07938, United States
    J Energy Eng, 3 (94-102):