Estimating Tactile Models of Heterogeneous Deformable Objects in Real Time

被引:3
|
作者
Yao, Shaoxiong [1 ]
Hauser, Kris [1 ]
机构
[1] Univ Illinois, Dept Comp Sci, Champaign, IL 61820 USA
关键词
ROBOT; CONTACT;
D O I
10.1109/ICRA48891.2023.10160731
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a method for learning the force response of heterogeneous, deformable objects directly from robot sensor data without prior knowledge. The method estimates an object's force response given robot force or torque measurements using a novel volumetric stiffness field representation and point-based contact simulator. The stiffness of each point colliding with the robot is estimated independently and is updated upon each observed measurement using a projected diagonal Kalman filter. Experiments show that this method can update a stiffness field over 105 points at 23 Hz or higher, and is more accurate than learning-based methods in predicting torque response while touching artificial plants. The method can also be augmented with visual information to help extrapolate stiffness fields to distant parts of the touched object using only a small number of touches.
引用
收藏
页码:12583 / 12589
页数:7
相关论文
共 50 条
  • [31] Tactile-based Manipulation of Deformable Objects with Dynamic Center of Mass
    Kaboli, Mohsen
    Yao, Kunpeng
    Cheng, Gordon
    2016 IEEE-RAS 16TH INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS (HUMANOIDS), 2016, : 752 - 757
  • [32] Adaptive tactile control for in-hand manipulation tasks of deformable objects
    Delgado, Angel
    Jara, Carlos A.
    Torres, Fernando
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2017, 91 (9-12): : 4127 - 4140
  • [33] Adaptive tactile control for in-hand manipulation tasks of deformable objects
    Angel Delgado
    Carlos A. Jara
    Fernando Torres
    The International Journal of Advanced Manufacturing Technology, 2017, 91 : 4127 - 4140
  • [34] Interaction Control for Tool Manipulation on Deformable Objects Using Tactile Feedback
    Zhang, Hanwen
    Lu, Zeyu
    Liang, Wenyu
    Yu, Haoyong
    Mao, Yao
    Wu, Yan
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (05): : 2700 - 2707
  • [35] Control of Robot Fingers with Adaptable Tactile Servoing to Manipulate Deformable Objects
    Delgado, Angel
    Jara, Carlos A.
    Torres, Fernando
    Mateo, Carlos M.
    ROBOT 2015: SECOND IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1, 2016, 417 : 81 - 92
  • [36] Multimodal Tactile Perception of Objects in a Real Home
    Bhattacharjee, Tapomayukh
    Clever, Henry M.
    Wade, Joshua
    Kemp, Charles C.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (03): : 2523 - 2530
  • [37] Estimating panel time-series models with heterogeneous slopes
    Eberhardt, Markus
    STATA JOURNAL, 2012, 12 (01): : 61 - 71
  • [38] Real-Time Visual Tracking of Deformable Objects in Robot-Assisted Surgery
    Leizea, Ibai
    Mendizabal, Ainitze
    Alvarez, Hugo
    Aguinaga, Iker
    Borro, Diego
    Sanchez, Emilio
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2017, 37 (01) : 56 - 68
  • [39] RT-DLO: Real-Time Deformable Linear Objects Instance Segmentation
    Caporali, Alessio
    Galassi, Kevin
    Zagar, Bare Luka
    Zanella, Riccardo
    Palli, Gianluca
    Knoll, Alois C.
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (11) : 11333 - 11342
  • [40] Tracking fractures of deformable objects in real-time with an RGB-D sensor
    Petit, Antoine
    Lippiello, Vincenzo
    Siciliano, Bruno
    2015 INTERNATIONAL CONFERENCE ON 3D VISION, 2015, : 632 - 639