Penalized Estimation of Sparse Markov Regime-Switching Vector Auto-Regressive Models

被引:0
|
作者
Chavez-Martinez, Gilberto [1 ,4 ]
Agarwal, Ankush [2 ]
Khalili, Abbas [1 ]
Ahmed, Syed Ejaz [3 ]
机构
[1] McGill Univ, Dept Math & Stat, Montreal, PQ, Canada
[2] Univ Glasgow, Adam Smith Business Sch, Glasgow City, Scotland
[3] Brock Univ, Fac Math & Sci, St Catharines, ON, Canada
[4] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 0B9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
EM algorithm; Multivariate time series; Regularization methods; VARIABLE SELECTION; TIME-SERIES; LIKELIHOOD; SHRINKAGE;
D O I
10.1080/00401706.2023.2201336
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider sparse Markov regime-switching vector autoregressive (MSVAR) models in which the regimes are governed by a latent homogeneous Markov chain. In practice, even for moderate values of the number of Markovian regimes and data dimension, the associated MSVAR model has a large parameter dimension compared to a typical sample size. We provide a unified penalized conditional likelihood approach for estimating sparse MSVAR models. We show that our proposed estimators are consistent and recover the sparse structure of the model. We also show that, when the number of regimes is correctly or over-specified, our method provides consistent estimation of the predictive density. We develop an efficient implementation of the method based on a modified Expectation-Maximization (EM) algorithm. We discuss strategies for estimation of the number of regimes. We evaluate finite-sample performance of the method via simulations, and further demonstrate its utility by analyzing a real dataset.
引用
收藏
页码:553 / 563
页数:11
相关论文
共 50 条
  • [21] Estimation of Auto-Regressive models for time series using Binary or Quantized Data
    Auber, R.
    Pouliquen, M.
    Pigeon, E.
    M'Saad, M.
    Gehan, O.
    Chapon, P. A.
    Moussay, S.
    IFAC PAPERSONLINE, 2018, 51 (15): : 581 - 586
  • [22] Spatial auto-correlation and auto-regressive models estimation from sample survey data
    Benedetti, Roberto
    Suesse, Thomas
    Piersimoni, Federica
    BIOMETRICAL JOURNAL, 2020, 62 (06) : 1494 - 1507
  • [23] An alternative estimation algorithm for innovation regime-switching models
    Huang, Yu-Lieh
    APPLIED ECONOMICS LETTERS, 2008, 15 (03) : 225 - 229
  • [24] Maximum Likelihood Estimation in Markov Regime-Switching Models With Covariate-Dependent Transition Probabilities
    Pouzo, Demian
    Psaradakis, Zacharias
    Sola, Martin
    ECONOMETRICA, 2022, 90 (04) : 1681 - 1710
  • [25] Hedging with Markov regime-switching method
    Zhao, Hua
    Wang, Yi-Ming
    Wang, Mi-Quan
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2013, 33 (07): : 1743 - 1752
  • [26] Identification of Auto-Regressive Exogenous Hammerstein Models Based on Support Vector Machine Regression
    Al-Dhaifllah, Mujahed
    Westwick, David T.
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2013, 21 (06) : 2083 - 2090
  • [27] Classical time varying factor-augmented vector auto-regressive models-estimation, forecasting and structural analysis
    Eickmeier, Sandra
    Lemke, Wolfgang
    Marcellino, Massimiliano
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2015, 178 (03) : 493 - 533
  • [28] Hierarchical vector auto-regressive models and their applications to multi-subject effective connectivity
    Gorrostieta, Cristina
    Fiecas, Mark
    Ombao, Hernando
    Burke, Erin
    Cramer, Steven
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2013, 7
  • [30] Fitting semiparametric Markov regime-switching models to electricity spot prices
    Eichler, M.
    Turk, D.
    ENERGY ECONOMICS, 2013, 36 : 614 - 624