One model is all you need: Multi-task learning enables simultaneous histology image segmentation and classification

被引:48
|
作者
Graham, Simon [1 ,2 ]
Vu, Quoc Dang [1 ]
Jahanifar, Mostafa [1 ]
Raza, Shan E. Ahmed [1 ]
Minhas, Fayyaz [1 ]
Snead, David [2 ,3 ]
Rajpoot, Nasir [1 ,2 ,3 ]
机构
[1] Univ Warwick, Tissue Image Analyt Ctr, Dept Comp Sci, Coventry, England
[2] Histofy Ltd, Coventry, England
[3] Univ Hosp Coventry & Warwickshire, Dept Pathol, Coventry, England
基金
英国医学研究理事会;
关键词
Computational pathology; Multi-task learning; Deep learning; NEURAL-NETWORKS;
D O I
10.1016/j.media.2022.102685
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The recent surge in performance for image analysis of digitised pathology slides can largely be attributed to the advances in deep learning. Deep models can be used to initially localise various structures in the tissue and hence facilitate the extraction of interpretable features for biomarker discovery. However, these models are typically trained for a single task and therefore scale poorly as we wish to adapt the model for an increasing number of different tasks. Also, supervised deep learning models are very data hungry and therefore rely on large amounts of training data to perform well. In this paper, we present a multi-task learning approach for segmentation and classification of nuclei, glands, lumina and different tissue regions that leverages data from multiple independent data sources. While ensuring that our tasks are aligned by the same tissue type and resolution, we enable meaningful simultaneous prediction with a single network. As a result of feature sharing, we also show that the learned representation can be used to improve the performance of additional tasks via transfer learning, including nuclear classification and signet ring cell detection. As part of this work, we train our developed Cerberus model on a huge amount of data, consisting of over 600 thousand objects for segmentation and 440 thousand patches for classification. We use our approach to process 599 colorectal whole-slide images from TCGA, where we localise 377 million, 900 thousand and 2.1 million nuclei, glands and lumina respectively. We make this resource available to remove a major barrier in the development of explainable models for computational pathology.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Diagnosis of Esophageal Lesions by Multi-Classification and Segmentation Using an Improved Multi-Task Deep Learning Model
    Tang, Suigu
    Yu, Xiaoyuan
    Cheang, Chak-Fong
    Hu, Zeming
    Fang, Tong
    Choi, I-Cheong
    Yu, Hon-Ho
    SENSORS, 2022, 22 (04)
  • [22] A Unified Multi-Task Learning Model with Joint Reverse Optimization for Simultaneous Skin Lesion Segmentation and Diagnosis
    Al-masni, Mohammed A.
    Al-Shamiri, Abobakr Khalil
    Hussain, Dildar
    Gu, Yeong Hyeon
    BIOENGINEERING-BASEL, 2024, 11 (11):
  • [23] Deep Multi-Task Learning for Large-Scale Image Classification
    Kuang, Zhenzhong
    Li, Zongmin
    Zhao, Tianyi
    Fan, Jianping
    2017 IEEE THIRD INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2017), 2017, : 310 - 317
  • [24] Multi-task learning for segmentation and classification of breast tumors from ultrasound images
    He Q.
    Yang Q.
    Su H.
    Wang Y.
    Computers in Biology and Medicine, 2024, 173
  • [25] MULTI-TASK CURRICULUM LEARNING FOR SEMI-SUPERVISED MEDICAL IMAGE SEGMENTATION
    Wang, Kaiping
    Zhan, Bo
    Luo, Yanmei
    Zhou, Jiliu
    Wu, Xi
    Wang, Yan
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 925 - 928
  • [26] MULTI-TASK LEARNING WITH CONTEXT-ORIENTED SELF-ATTENTION FOR BREAST ULTRASOUND IMAGE CLASSIFICATION AND SEGMENTATION
    Xu, Meng
    Huang, Kuan
    Qi, Xiaojun
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [27] Multi-Task Deep Learning for Image Segmentation Using Recursive Approximation Tasks
    Ke, Rihuan
    Bugeau, Aurelie
    Papadakis, Nicolas
    Kirkland, Mark
    Schuetz, Peter
    Schonlieb, Carola-Bibiane
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3555 - 3567
  • [28] Weakly-Supervised Medical Image Segmentation Based on Multi-task Learning
    Xie, Xuanhua
    Fan, Huijie
    Yu, Zhencheng
    Bai, Haijun
    Tang, Yandong
    INTELLIGENT ROBOTICS AND APPLICATIONS (ICIRA 2022), PT II, 2022, 13456 : 395 - 404
  • [29] A multi-task generative model for simultaneous post-contrast MR image synthesis and brainstem glioma segmentation
    Zhang, Yajing
    Huang, Yanxin
    Xiong, Xiangyu
    Liu, Yaou
    Qi, Jin
    MAGNETIC RESONANCE IMAGING, 2024, 113
  • [30] Breast cancer pathological image classification based on multi-task model
    Yu L.
    Xia Y.
    Wang P.
    Yan Y.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49 (08): : 53 - 57