Bottom-up multi-interface modification boosts the performance of carbon-based HTL-free all-inorganic CsPbI2Br perovskite solar cells

被引:13
|
作者
Huo, Xiaonan [1 ]
Jiang, Yaguang [2 ]
Lv, Jinqing [3 ]
Sun, Weiwei [1 ]
Liu, Weifeng [1 ]
Yin, Ran [4 ]
Gao, Yukun [1 ]
Wang, Kexiang [5 ]
You, Tingting [1 ]
Yin, Penggang [1 ]
机构
[1] Beihang Univ, Sch Chem, Beijing 100191, Peoples R China
[2] Beijing Polytech, Coll Bioengn, Beijing 100176, Peoples R China
[3] Changchun Univ Technol, Adv Inst Mat Sci, Sch Chem Engn, Changchun 130012, Peoples R China
[4] Beihang Univ, Sch Phys, Beijing 100191, Peoples R China
[5] Beihang Univ, Sch Energy & Power Engn, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
CsPbI2Br; Bottom-up; Gradient energy level; Perfluoropropionic acid; Carbon electrode; Perovskite solar cells; HIGHLY EFFICIENT; TIO2;
D O I
10.1016/j.cej.2024.149626
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The inferior interface quality between CsPbI2Br perovskite and the electron transport layer (ETL) as well as carbon electrode limits the stability and power conversion efficiency (PCE) of hole transport layer (HTL) free carbon -based all -inorganic CsPbI2Br perovskite solar cells (C-IPSCs). Herein, perfluoropropionic acid (PFPA) is designed as a bottom -up multiple surface defect passivator that can simultaneously passivate perovskite/TiO2 interface and perovskite/carbon electrode interface. The comprehensive experiments demonstrate that PFPA can not only optimize the electron mobility, conductivity, and band structure of the TiO2 ETL through passivating oxygen vacancies (VO), but also diffuse to the upper surface of perovskite film through grain boundaries to passivate the surface lead defects, thereby facilitating the gradient alignment of the perovskite surface energy levels with the carbon electrode. At the same time, PFPA can effectively release the tensile stress at the interface of perovskite and reduce the delocalization state of the band tail caused by lattice distortion, so as to prepare high -quality perovskite films. As a result of the above interaction, the PCE of HTL-free CsPbI2Br C-IPSCs after PFPA modification is increased from 12.24% (control device) to 14.15%. In addition, the modified unencapsulated devices show superior long-term stability and thermal stability.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Dual Interfacial Engineering Enables Efficient and Reproducible CsPbI2Br All-Inorganic Perovskite Solar Cells
    Wang, Yao
    Duan, Chenghao
    Zhang, Xuliang
    Rujisamphan, Nopporn
    Liu, Yang
    Li, Youyong
    Yuan, Jianyu
    Ma, Wanli
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (28) : 31659 - 31666
  • [42] All-Inorganic Perovskite CsPbI2Br Through Co-evaporation for Planar Heterojunction Solar Cells
    Park, Chan-Gyu
    Choi, Won-Gyu
    Na, Sungjae
    Moon, Taeho
    ELECTRONIC MATERIALS LETTERS, 2019, 15 (01) : 56 - 60
  • [43] Inverted All-Inorganic CsPbI2Br Perovskite Solar Cells with Promoted Efficiency and Stability by Nickel Incorporation
    Chen, Lijun
    Wan, Li
    Li, Xiaodong
    Zhang, Wenxiao
    Fu, Sheng
    Wang, Yueming
    Li, Shuang
    Wang, Hai-Qiao
    Song, Weijie
    Fang, Junfeng
    CHEMISTRY OF MATERIALS, 2019, 31 (21) : 9032 - 9039
  • [44] Interface engineering of low temperature processed all-inorganic CsPbI2Br perovskite solar cells toward PCE exceeding 14%
    Zhou, Long
    Guo, Xing
    Lin, Zhenhua
    Ma, Jing
    Su, Jie
    Hu, Zhaosheng
    Zhang, Chunfu
    Liu, Shengzhong
    Chang, Jingjing
    Hao, Yue
    NANO ENERGY, 2019, 60 : 583 - 590
  • [45] Regulation of Interface Schottky Barrier and Photoelectric Properties in Carbon-Based HTL-Free Perovskite Solar Cells
    Da, Shi-Ji
    Liu, Wen-Wu
    Li, Cai-Xia
    Lei, Yi-Xiao
    Ran, Fen
    SMALL, 2025, 21 (05)
  • [46] Fine modification of reactively sputtered NiOx hole transport layer for application in all-inorganic CsPbI2Br perovskite solar cells
    Pan, L.
    Liu, C.
    Zhu, H.
    Wan, M.
    Li, Y.
    Mai, Y.
    SOLAR ENERGY, 2020, 196 : 521 - 529
  • [47] Surface dipole affords high-performance carbon-based CsPbI2Br perovskite solar cells
    Yan, Zhongliang
    Wang, Deng
    Jing, Yu
    Wang, Xin
    Zhang, Huayan
    Liu, Xiao
    Wang, Shibo
    Wang, Chunyan
    Sun, Weihai
    Wu, Jihuai
    Lan, Zhang
    CHEMICAL ENGINEERING JOURNAL, 2022, 433
  • [48] Bridging the buried interface with conjugated molecule for highly efficient carbon-based inorganic CsPbI2Br perovskite solar cells fabricated in air
    Shi, Yifei
    Zhang, Lei
    Hu, Shuming
    Wang, Xu
    Han, Jiajia
    Huang, Jincheng
    Chen, Junjie
    Zhang, Yuanfang
    Zhang, Xinlong
    He, Jintao
    Zuo, Hengzhi
    Ju, Jiayao
    Wu, Zihan
    Zhao, Wei
    Zeng, Yuxi
    Zou, Yu
    Liao, Kai
    Yang, Ruoxi
    Ye, Wenxia
    Gu, Yongjie
    Gong, Li
    Fan, Shaosheng
    Peng, Zhuoyin
    Chen, Jianlin
    CHEMICAL ENGINEERING JOURNAL, 2024, 492
  • [49] Structurally Reconstructed CsPbI2Br Perovskite for Highly Stable and Square-Centimeter All-Inorganic Perovskite Solar Cells
    Liu, Chong
    Li, Wenzhe
    Li, Huanyong
    Wang, Huamin
    Zhang, Cuiling
    Yang, Yingguo
    Gao, Xingyu
    Xue, Qifan
    Yip, Hin-Lap
    Fan, Jiandong
    Schropp, Ruud E. I.
    Mai, Yaohua
    ADVANCED ENERGY MATERIALS, 2019, 9 (07)
  • [50] Targeting the imperfections at the ZnO/CsPbI2Br interface for low-temperature carbon-based perovskite solar cells
    Zhang, Xiang
    Zhang, Dan
    Guo, Tonghui
    Zou, Junjie
    Jin, Junjun
    Zheng, Chunqiu
    Zhou, Yuan
    Zhu, Zhenkun
    Hu, Zhao
    Cao, Qiang
    Wu, Sujuan
    Zhang, Jing
    Tai, Qidong
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (17) : 9616 - 9625