Autonomous perception and adaptive standardization for few-shot learning

被引:4
|
作者
Zhang, Yourun [1 ]
Gong, Maoguo [1 ]
Li, Jianzhao [1 ]
Feng, Kaiyuan [1 ]
Zhang, Mingyang [1 ]
机构
[1] Xidian Univ, Key Lab Collaborat Intelligence Syst, Minist Educ, 2 South TaiBai Rd, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Few-shot learning; Image classification; Deep learning; Feature extraction; RAT MODEL; NETWORK; ALIGNMENT;
D O I
10.1016/j.knosys.2023.110746
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Identifying unseen classes with limited labeled data for reference is a challenging task, which is also known as few-shot learning. Generally, a knowledge-rich model is more robust than a knowledge-poor model when facing novel situations, and an intuitive way to enrich knowledge is to find additional training data, but this is not compatible with the principle of few-shot learning which aims to reduce reliance on big data. In contrast, improving the utilization of existing data is a more attractive option. In this paper, we propose a batch perception distillation approach, which improves the utilization of existing data by guiding individual classification with the intermixed information across a batch. In addition to data utilization, obtaining robust feature representation is also a concern. Specifically, the widely adopted metric-based few-shot classification approach classifies unseen testing classes by comparing the extracted features of different novel samples, which requires that the extracted features can accurately represent the class-related clues of the input images. In this paper, we propose a salience perception attention that enables the model to focus more easily on key clues in images, which helps to reduce the interference of irrelevant factors during classification. To overcome the distribution gap between the training classes and the unseen testing classes, we propose a weighted centering post-processing that standardizes the testing data according to the similarity between the training and testing classes. By combining the three proposed components, our method achieves superior performance on four widely used few-shot image classification datasets.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Adaptive few-shot learning with a fair priori distribution
    Zeng, Xinke
    Huang, Bo
    Jia, Ke
    Jia, Li
    Zhao, Ke
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 102
  • [12] Episode Adaptive Embedding Networks for Few-Shot Learning
    Liu, Fangbing
    Wang, Qing
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT III, 2021, 12714 : 3 - 15
  • [13] Learning to Learn Task-Adaptive Hyperparameters for Few-Shot Learning
    Baik, Sungyong
    Choi, Myungsub
    Choi, Janghoon
    Kim, Heewon
    Lee, Kyoung Mu
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (03) : 1441 - 1454
  • [14] Defensive Few-Shot Learning
    Li, Wenbin
    Wang, Lei
    Zhang, Xingxing
    Qi, Lei
    Huo, Jing
    Gao, Yang
    Luo, Jiebo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 5649 - 5667
  • [15] Federated Few-shot Learning
    Wang, Song
    Fu, Xingbo
    Ding, Kaize
    Chen, Chen
    Chen, Huiyuan
    Li, Jundong
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 2374 - 2385
  • [16] Fractal Few-Shot Learning
    Zhou, Fobao
    Huang, Wenkai
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (11) : 1 - 15
  • [17] Looking Wider for Better Adaptive Representation in Few-Shot Learning
    Zhao, Jiabao
    Yang, Yifan
    Lin, Xin
    Yang, Jing
    He, Liang
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10981 - 10989
  • [18] Survey on Few-shot Learning
    Zhao K.-L.
    Jin X.-L.
    Wang Y.-Z.
    Ruan Jian Xue Bao/Journal of Software, 2021, 32 (02): : 349 - 369
  • [19] Variational Few-Shot Learning
    Zhang, Jian
    Zhao, Chenglong
    Ni, Bingbing
    Xu, Minghao
    Yang, Xiaokang
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1685 - 1694
  • [20] Task-adaptive Few-shot Learning on Sphere Manifold
    He, Xi
    Li, Fanzhang
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 2949 - 2956