Single-Qubit Gates Matter for Optimising Quantum Circuit Depth in Qubit Mapping

被引:2
|
作者
Li, Sanjiang [1 ]
Ky Dan Nguyen [2 ]
Clare, Zachary [3 ]
Feng, Yuan [1 ]
机构
[1] Univ Technol Sydney, Quantum Software & Informat, Sydney, NSW, Australia
[2] Univ Sydney, Sch Comp Sci, Sydney, NSW, Australia
[3] Univ Technol Sydney, Sch Comp Sci, Sydney, NSW, Australia
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
D O I
10.1109/ICCAD57390.2023.10323863
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Quantum circuit transformation (QCT, a.k.a. qubit mapping) is a critical step in quantum circuit compilation. Typically, QCT is achieved by finding an appropriate initial mapping and using SWAP gates to route the qubits such that all connectivity constraints are satisfied. The objective of QCT can be to minimise circuit size or depth. Most existing QCT algorithms prioritise minimising circuit size, potentially overlooking the impact of single-qubit gates on circuit depth. In this paper, we first point out that a single SWAP gate insertion can double the circuit depth, and then propose a simple and effective method that takes into account the impact of single-qubit gates on circuit depth. Our method can be combined with many existing QCT algorithms to optimise circuit depth. The Qiskit SABRE algorithm has been widely accepted as the state-of-the-art algorithm for optimising both circuit size and depth. We demonstrate the effectiveness of our method by embedding it in SABRE, showing that it can reduce circuit depth by up to 50% and 27% on average on, for instance, Google Sycamore and 117 real quantum circuits from MQTBench.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Single-qubit reaped quantum state tomography
    Choi, Mahn-Soo
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [42] On extrema of the objective functional for short-time generation of single-qubit quantum gates
    Pechen, A. N.
    Il'in, N. B.
    IZVESTIYA MATHEMATICS, 2016, 80 (06) : 1200 - 1212
  • [43] Nonadiabatic single-qubit quantum Otto engine
    Solfanelli, Andrea
    Falsetti, Marco
    Campisi, Michele
    PHYSICAL REVIEW B, 2020, 101 (05)
  • [44] Simulating time evolution with fully optimized single-qubit gates on parametrized quantum circuits
    Wada, Kaito
    Raymond, Rudy
    Ohnishi, Yu-ya
    Kaminishi, Eriko
    Sugawara, Michihiko
    Yamamoto, Naoki
    Watanabe, Hiroshi C.
    PHYSICAL REVIEW A, 2022, 105 (06)
  • [45] Single-qubit thermometry
    Jevtic, Sania
    Newman, David
    Rudolph, Terry
    Stace, T. M.
    PHYSICAL REVIEW A, 2015, 91 (01):
  • [46] Efficient decomposition of single-qubit gates into V basis circuits
    Bocharov, Alex
    Gurevich, Yuri
    Svore, Krysta M.
    PHYSICAL REVIEW A, 2013, 88 (01)
  • [47] Error-resistant single-qubit gates with trapped ions
    Timoney, N.
    Elman, V.
    Glaser, S.
    Weiss, C.
    Johanning, M.
    Neuhauser, W.
    Wunderlich, Chr.
    PHYSICAL REVIEW A, 2008, 77 (05):
  • [48] Single-qubit gates in frequency-crowded transmon systems
    Schutjens, R.
    Abu Dagga, F.
    Egger, D. J.
    Wilhelm, F. K.
    PHYSICAL REVIEW A, 2013, 88 (05):
  • [49] Design and integration of single-qubit rotations and two-qubit gates in silicon above one Kelvin
    Luca Petit
    Maximilian Russ
    Gertjan H. G. J. Eenink
    William I. L. Lawrie
    James S. Clarke
    Lieven M. K. Vandersypen
    Menno Veldhorst
    Communications Materials, 3
  • [50] Design and integration of single-qubit rotations and two-qubit gates in silicon above one Kelvin
    Petit, Luca
    Russ, Maximilian
    Eenink, Gertjan H. G. J.
    Lawrie, William I. L.
    Clarke, James S.
    Vandersypen, Lieven M. K.
    Veldhorst, Menno
    COMMUNICATIONS MATERIALS, 2022, 3 (01)