A discrete time evolution model for fracture networks

被引:2
|
作者
Domokos, Gabor [1 ,2 ]
Regos, Krisztina [1 ,2 ]
机构
[1] Budapest Univ Technol & Econ, Dept Morphol & Geometr Modeling, Muegyet Rkp 3,K220, H-1111 Budapest, Hungary
[2] Budapest Univ Technol & Econ, MTA BME Morphodynam Res Grp, Muegyet Rkp 3,K220, H-1111 Budapest, Hungary
关键词
Fracture network; Evolution model; Discrete dynamical system; Tessellation; PATTERNS;
D O I
10.1007/s10100-022-00838-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We examine geological crack patterns using the mean field theory of convex mosaics. We assign the pair n over bar *,v over bar *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\overline{n } }<^>{*},{\overline{v } }<^>{*}\right)$$\end{document} of average corner degrees (Domokos et al. in A two-vertex theorem for normal tilings. Aequat Math , 2022) to each crack pattern and we define two local, random evolutionary steps R-0 and R-1, corresponding to secondary fracture and rearrangement of cracks, respectively. Random sequences of these steps result in trajectories on the n over bar *,v over bar *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\overline{n } }<^>{*},{\overline{v } }<^>{*}\right)$$\end{document} plane. We prove the existence of limit points for several types of trajectories. Also, we prove that celldensity rho over bar =v over bar *n over bar *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\rho }= \frac{{\overline{v } }<^>{*}}{{\overline{n } }<^>{*}}$$\end{document} increases monotonically under any admissible trajectory.
引用
收藏
页码:83 / 94
页数:12
相关论文
共 50 条
  • [21] Model for the evolution of the time profile in optimistic parallel discrete event simulations
    Ziganurova, L.
    Novotny, M. A.
    Shchur, L. N.
    INTERNATIONAL CONFERENCE ON COMPUTER SIMULATION IN PHYSICS AND BEYOND 2015, 2016, 681
  • [22] SYMMETRIES AND TIME EVOLUTION IN DISCRETE PHASE SPACES - A SOLUBLE MODEL CALCULATION
    GALETTI, D
    PIZA, AFR
    PHYSICA A, 1995, 214 (02): : 207 - 228
  • [23] The evolution of crack seal vein and fracture networks in an evolving stress field: Insights from Discrete Element Models of fracture sealing
    Virgo, Simon
    Abe, Steffen
    Urai, Janos L.
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2014, 119 (12) : 8708 - 8727
  • [24] A two-dimensional extended finite element method model of discrete fracture networks
    Rivas, Endrina
    Parchei-Esfahani, Matin
    Gracie, Robert
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 117 (13) : 1263 - 1282
  • [25] TIME-DISCRETE NETWORKS
    LEAKE, RJ
    SAEKS, R
    LIU, R
    ELECTRONICS LETTERS, 1968, 4 (04) : 74 - &
  • [26] TIME-DISCRETE NETWORKS
    DVORAK, V
    ELECTRONICS LETTERS, 1968, 4 (11) : 222 - &
  • [27] Bifurcations and chaos of a discrete-time model in genetic regulatory networks
    Yue, Dandan
    Guan, Zhi-Hong
    Chen, Jie
    Ling, Guang
    Wu, Yonghong
    NONLINEAR DYNAMICS, 2017, 87 (01) : 567 - 586
  • [28] Bifurcations and chaos of a discrete-time model in genetic regulatory networks
    Dandan Yue
    Zhi-Hong Guan
    Jie Chen
    Guang Ling
    Yonghong Wu
    Nonlinear Dynamics, 2017, 87 : 567 - 586
  • [29] Community detection in signed networks based on discrete-time model
    陈建芮
    张莉
    刘维维
    闫在在
    Chinese Physics B, 2017, 26 (01) : 578 - 587
  • [30] Community detection in signed networks based on discrete-time model
    Chen, Jianrui
    Zhang, Li
    Liu, Weiwei
    Yan, Zaizai
    CHINESE PHYSICS B, 2017, 26 (01)