Effect of CO2 Corrosion and Adsorption-Induced Strain on Permeability of Oil Shale: Numerical Simulation

被引:2
|
作者
Ao, Xiang [1 ]
Wang, Baobao [1 ]
Rao, Yuxi [1 ]
Zhang, Lang [1 ]
Wang, Yu [1 ]
Tang, Hongkun [1 ]
机构
[1] Chongqing Univ Sci & Technol, Coll Petr & Nat Gas Engn, Chongqing Key Lab Complex Oil, Chongqing Key Lab Heavy Oil Exploitat, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; corrosion; adsorption-induced strain; oil-bearing shale; permeability; numerical simulation; SORPTION; COAL;
D O I
10.3390/en16020780
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Permeability is a crucial parameter for enhancing shale oil recovery through CO2 injection in oil-bearing shale. After CO2 is injected into the shale reservoir, CO2 corrosion and adsorption-induced strain can change the permeability of the oil shale, affecting the recovery of shale oil. This study aimed to explore the influence of CO2 corrosion and adsorption-induced strain on the permeability of oil shale. The deformation of the internal pore diameter of oil shale induced by CO2 corrosion under different pressures was measured by low-pressure nitrogen gas adsorption in the laboratory, and the corrosion model was fitted using the experimental data. Following the basic definitions of permeability and porosity, a dynamic mathematical model of porosity and permeability was obtained, and a fluid-solid coupling mathematical model of CO2-containing oil shale was established according to the basic theory of fluid-solid coupling. Then the effects of adsorption expansion strain and corrosion compression strain on permeability evolution were considered to improve the accuracy of the oil shale permeability model. The numerical simulation results showed that adsorption expansion strain, corrosion compression strain, and confining pressure are the important factors controlling the permeability evolution of oil shale. In addition, adsorption expansion strain and corrosion compression strain have different effects under different fluid pressures. In the low-pressure zone, the adsorption expansion strain decreases the permeability of oil shale with increasing pressure. In the high-pressure zone, the increase in pressure decreases the influence of expansion strain while permeability gradually recovers. The compressive strain increases slowly with increasing pressure in the low-pressure zone, slowly increasing oil shale permeability. However, in the high-pressure area, the increase in pressure gradually weakens the influence of corrosion compressive strain, and the permeability of oil shale gradually recovers.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Effect of Wettability and CO2 on Asphaltene Precipitation in Shale Oil Reservoir
    Tian, Yapeng
    Qu, Zhan
    Wang, Ping
    Liu, Nannan
    Ju, Binshan
    Zhan, Jie
    Wang, Mingxian
    Dong, Yintao
    ENERGY & FUELS, 2023, 37 (20) : 15744 - 15752
  • [22] Modelling of fully-coupled CO2 diffusion and adsorption-induced coal matrix swelling
    Sampath, K. H. S. M.
    Perera, M. S. A.
    Matthai, S. K.
    Ranjith, P. G.
    Dong-yin, Li
    FUEL, 2020, 262
  • [23] Molecular dynamics analysis on occurrence characteristics of shale oil and competitive adsorption mechanism of CO2 and oil
    Wang L.
    Zhang Y.
    Liu Y.
    Huang L.
    Zou R.
    Meng Z.
    Lei H.
    Zhongguo Shiyou Daxue Xuebao (Ziran Kexue Ban)/Journal of China University of Petroleum (Edition of Natural Science), 2023, 47 (04): : 128 - 136
  • [24] Experimental and numerical simulation study on the CO2 pre-injection fracturing optimization parameters in continental shale oil
    Li, Zhongxin
    Lin, Chengyan
    Shi, Xueying
    Dong, Xu
    Su, Xianheng
    Pan, Zhejun
    Liu, Bo
    Suo, Yu
    PHYSICS OF FLUIDS, 2024, 36 (12)
  • [25] Experimental and numerical studies on CO2 injectivity in low permeability oil reservoirs
    Meng, Fankun
    Cao, Lin
    Zhou, Yuhui
    Liu, Botao
    Wen, Chengyue
    Liu, Jia
    FRONTIERS IN EARTH SCIENCE, 2024, 12
  • [26] Effect of supercritical CO2 extraction on CO2/CH4 competitive adsorption in Yanchang shale
    Qin, Chao
    Jiang, Yongdong
    Zhou, Junping
    Song, Xiao
    Liu, Zhengjie
    Li, Dong
    Zhou, Feng
    Xie, Yingliang
    Xie, Chenglong
    Jiang, Yongdong (jiangyd1015@163.com), 1600, Elsevier B.V. (412):
  • [27] Effect of supercritical CO2 extraction on CO2/CH4 competitive adsorption in Yanchang shale
    Qin, Chao
    Jiang, Yongdong
    Zhou, Junping
    Song, Xiao
    Liu, Zhengjie
    Li, Dong
    Zhou, Feng
    Xie, Yingliang
    Xie, Chenglong
    CHEMICAL ENGINEERING JOURNAL, 2021, 412
  • [28] Combined Effects of CO2 Adsorption-Induced Swelling and Dehydration-Induced Shrinkage on Caprock Sealing Efficiency
    Shang, Xiaoji
    Wang, Jianguo
    Wang, Huimin
    Wang, Xiaolin
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (21)
  • [29] Numerical Simulation of CO2 Adsorption on K-Based Sorbent
    Zhang, Li
    Yin, Yanlong
    Li, Lei
    Wang, Feng
    Song, Quanbin
    Zhao, Ning
    Xiao, Fukui
    Wei, Wei
    ENERGY & FUELS, 2016, 30 (05) : 4283 - 4291
  • [30] Effect of cap rock thickness and permeability on geological storage of CO2: laboratory test and numerical simulation
    Chen, Zhixi
    Zhou, Fengde
    Rahman, Sheikh S.
    ENERGY EXPLORATION & EXPLOITATION, 2014, 32 (06) : 943 - 964