A Deep Discriminant Fractional-order Canonical Correlation Analysis For Information Fusion

被引:0
|
作者
Gao, Lei [1 ]
Guan, Ling [1 ]
机构
[1] Toronto Metropolitan Univ, Dept Elect Comp & Biomed Engn, Toronto, ON, Canada
关键词
deep cascade neural networks; discriminant power; fractional-order canonical correlation analysis; handwritten digit recognition; audio emotion recognition; object recognition;
D O I
10.1109/SDS57534.2023.00015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The advance of sensory and computing technology has attracted wide attention in the study of intelligent information fusion for multimedia computing and analysis. As a result, information fusion has been taking center stage in the intelligent multimedia and machine learning communities. In this paper, a deep discriminant fractional-order canonical correlation analysis (DDFCCA) method is proposed with application to information fusion. Benefiting from the integration of deep cascade neural networks (NNs) with discriminant power of the fractional-order correlation matrix across multiple data/information sources, the proposed DDFCCA method demonstrates the ability to generate high quality data/information representation. To verify the effectiveness and generic nature of the proposed method, we conduct experiments on three database (MNIST database, RML audio emotional database, and Caltech101 database). Experimental results validate the superiority of the DDFCCA method over state-of-the-art for information fusion.
引用
收藏
页码:58 / 65
页数:8
相关论文
共 50 条
  • [41] Deep Adversarial Canonical Correlation Analysis
    Fan, Wenqi
    Ma, Yao
    Xu, Han
    Liu, Xiaorui
    Wang, Jianping
    Li, Qing
    Tang, Jiliang
    PROCEEDINGS OF THE 2020 SIAM INTERNATIONAL CONFERENCE ON DATA MINING (SDM), 2020, : 352 - 360
  • [42] INFORMATION FUSION VIA MULTIMODAL HASHING WITH DISCRIMINANT CORRELATION MAXIMIZATION
    Gao, Lei
    Guan, Ling
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2224 - 2228
  • [43] Fractional-order viscoelastic model of musculoskeletal tissues: correlation with fractals
    Guo, Jianqiao
    Yin, Yajun
    Peng, Gang
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2249):
  • [44] Unsupervised discriminant canonical correlation analysis based on spectral clustering
    Wang, Sheng
    Lu, Jianfeng
    Gu, Xingjian
    Weyori, Benjamin A.
    Yang, Jing-yu
    NEUROCOMPUTING, 2016, 171 : 425 - 433
  • [46] Analysis of fractional-order models for hepatitis B
    L. C. Cardoso
    F. L. P. Dos Santos
    R. F. Camargo
    Computational and Applied Mathematics, 2018, 37 : 4570 - 4586
  • [47] Numerical Analysis of the Fractional-Order Telegraph Equations
    Azhar, Omar Fouad
    Naeem, Muhammad
    Mofarreh, Fatemah
    Kafle, Jeevan
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [48] Bifurcation analysis of fractional-order VD model
    Ramesh, P.
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2021, 11 (5-6) : 542 - 565
  • [49] Analysis of solution trajectories of fractional-order systems
    Patil, Madhuri
    Bhalekar, Sachin
    PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):
  • [50] A fractional-order approach to cardiac rhythm analysis
    Templos-Hernandez, Diana J.
    Quezada-Tellez, Luis A.
    Gonzalez-Hernandez, Brian M.
    Rojas-Vite, Gerardo
    Pineda-Sanchez, Jose E.
    Fernandez-Anaya, Guillermo
    Rodriguez-Torres, Erika E.
    CHAOS SOLITONS & FRACTALS, 2021, 147 (147)