A Transfer Learning Approach to Breast Cancer Classification in a Federated Learning Framework

被引:28
|
作者
Tan, Y. Nguyen [1 ]
Tinh, Vo Phuc [1 ]
Lam, Pham Duc [2 ]
Nam, Nguyen Hoang [3 ]
Khoa, Tran Anh [3 ]
机构
[1] Ton Duc Thang Univ, Fac Elect & Elect Engn, Ho Chi Minh City 700000, Vietnam
[2] Nguyen Tat Thanh Univ, Fac Engn & Technol, Ho Chi Minh City 700000, Vietnam
[3] Ton Duc Thang Univ, Fac Elect & Elect Engn, Modeling Evolutionary Algorithms Simulat & Artific, Ho Chi Minh City 700000, Vietnam
关键词
Breast cancer; Feature extraction; Transfer learning; Cancer; Data models; Artificial intelligence; Tumors; Federated learning; Sampling methods; synthetic minority oversampling; federated learning; transfer learning; breast cancer;
D O I
10.1109/ACCESS.2023.3257562
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Artificial intelligence (AI) technologies have seen strong development. Many applications now use AI to diagnose breast cancer. However, most new research has only been conducted in centralized learning (CL) environments, which entails the risk of privacy breaches. Moreover, the accurate identification and localization of lesions and tumor prediction using AI technologies is expected to increase patients' likelihood of survival. To address these difficulties, we developed a federated learning (FL) facility that extracts features from participating environments rather than a CL facility. This study's novel contributions include (i) the application of transfer learning to extract data features from the region of interest (ROI) in an image, which aims to enable careful pre-processing and data enhancement for data training purposes; (ii) the use of synthetic minority oversampling technique (SMOTE) to process data, which aims to more uniformly classify data and improve diagnostic prediction performance for diseases; (iii) the application of FeAvg-CNN + MobileNet in an FL framework to ensure customer privacy and personal security; and (iv) the presentation of experimental results from different deep learning, transfer learning and FL models with balanced and imbalanced mammography datasets, which demonstrate that our solution leads to much higher classification performance than other approaches and is viable for use in AI healthcare applications.
引用
收藏
页码:27462 / 27476
页数:15
相关论文
共 50 条
  • [31] A federated learning framework based on transfer learning and knowledge distillation for targeted advertising
    Su, Caiyu
    Wei, Jinri
    Lei, Yuan
    Li, Jiahui
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [32] Breast Cancer Classification in Ultrasound Images using Transfer Learning
    Hijab, Ahmed
    Rushdi, Muhammad A.
    Gomaa, Mohammed M.
    Eldeib, Ayman
    2019 FIFTH INTERNATIONAL CONFERENCE ON ADVANCES IN BIOMEDICAL ENGINEERING (ICABME), 2019, : 64 - 67
  • [33] Classification of Breast Cancer Histology Images Using Transfer Learning
    Vesal, Sulaiman
    Ravikumar, Nishant
    Davari, AmirAbbas
    Ellmann, Stephan
    Maier, Andreas
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2018), 2018, 10882 : 812 - 819
  • [34] Transfer Learning for Breast Cancer Classification in Terahertz and Infrared Imaging
    Gezimati, Mavis
    Singh, Ghanshyam
    5TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, BIG DATA, COMPUTING AND DATA COMMUNICATION SYSTEMS (ICABCD2022), 2022,
  • [35] Double Transfer Learning for Breast Cancer Histopathologic Image Classification
    de Matos, Jonathan
    Britto, Alceu de S., Jr.
    Oliveira, Luiz E. S.
    Koerich, Alessandro L.
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [36] Classification of Breast Cancer Histology Images Using Transfer Learning
    Ahmad, Hafiz Mughees
    Ghuffar, Sajid
    Khurshid, Khurram
    PROCEEDINGS OF 2019 16TH INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGY (IBCAST), 2019, : 328 - 332
  • [37] Fusing of Deep Learning, Transfer Learning and GAN for Breast Cancer Histopathological Image Classification
    Mai Bui Huynh Thuy
    Vinh Truong Hoang
    ADVANCED COMPUTATIONAL METHODS FOR KNOWLEDGE ENGINEERING (ICCSAMA 2019), 2020, 1121 : 255 - 266
  • [38] FedPacket: A Federated Learning Approach to Mobile Packet Classification
    Bakopoulou, Evita
    Tillman, Balint
    Markopoulou, Athina
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (10) : 3609 - 3628
  • [39] Federated Learning Approach for Remote Sensing Scene Classification
    Ben Youssef, Belgacem
    Alhmidi, Lamyaa
    Bazi, Yakoub
    Zuair, Mansour
    REMOTE SENSING, 2024, 16 (12)
  • [40] An adaptive federated learning framework for intelligent road surface classification
    Vondikakis, Ioannis V.
    Panagiotopoulos, Ilias E.
    Dimitrakopoulos, George J.
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 4121 - 4126