New quantum surface codes from semi-regular tessellations

被引:1
|
作者
da Silva, Eduardo Brandani [1 ]
Brizola, Evandro Mazetto [1 ]
Soares Jr, Waldir Silva [2 ]
Copatti, Douglas Fernando [3 ]
机构
[1] Univ Estadual Maringa, Maringa State Univ, Dept Math, Ave Colombo 5790, BR-87020900 Maringa, PR, Brazil
[2] Univ Tecnol Fed Parana UTFPR, Dept Math, Campus Pato Branco,Via Conhecimento,s-n-KM 01 Frar, BR-85503390 Pato Branco, PR, Brazil
[3] Inst Fed Parana Campus Pitanga, Dept Math, Rua Jose Alencar,1-080 Vila, BR-85200000 Pitanga, PR, Brazil
关键词
Quantum codes; Surface codes; Semi-regular tessellations; Uniform tiling; TORSION FREE SUBGROUPS; FUCHSIAN-GROUPS;
D O I
10.1007/s11128-023-04147-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Current work presents a new approach to quantum surface codes on compact surfaces with genus g >= 2 using the identification of these surfaces with hyperbolic polygons and hyperbolic semi-regular tessellations. This method generalizes other contructions, and we show that this approach may give rise to codes with very good parameters. We present tables with several examples of these codes whose parameters had not been shown before.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] ON THE SPACE DISTRIBUTION OF SEMI-REGULAR VARIABLES
    ASLAN, Z
    ASTRONOMY & ASTROPHYSICS, 1980, 90 (03) : 355 - 358
  • [22] Mechanical Properties of Semi-Regular Lattices
    Omidi, Milad
    St-Pierre, Luc
    MATERIALS & DESIGN, 2022, 213
  • [23] Semi-regular masas of transfinite length
    White, Stuart A.
    Wiggins, Alan D.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2007, 18 (09) : 995 - 1007
  • [24] Semi-regular Tilings of the Hyperbolic Plane
    Basudeb Datta
    Subhojoy Gupta
    Discrete & Computational Geometry, 2021, 65 : 531 - 553
  • [25] SPECTRAL DETERMINATION OF SEMI-REGULAR POLYGONS
    Enciso, Alberto
    Gomez-Serrano, Javier
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2022, 122 (03) : 399 - 419
  • [26] Semi-regular solution: General behavior
    Castellanos-Suarez, Aly J.
    Garcia-Sucre, Maximo
    CHEMICAL ENGINEERING SCIENCE, 2012, 68 (01) : 443 - 448
  • [27] ON SEMI-REGULAR FINITE CONTINUED FRACTIONS
    MYERSON, G
    ARCHIV DER MATHEMATIK, 1987, 48 (05) : 420 - 425
  • [28] ON SEMI-REGULAR AND MINIMAL HAUSDORFF EMBEDDINGS
    STRECKER, GE
    WATTEL, E
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1967, 70 (02): : 234 - &
  • [29] Dynamic of semi-regular polynomic applications
    Dinh, TC
    Sibony, N
    ARKIV FOR MATEMATIK, 2004, 42 (01): : 61 - 85
  • [30] Fracture toughness of semi-regular lattices
    Omidi, Milad
    St-Pierre, Luc
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2023, 270