UN ENFOQUE DE MACHINE LEARNING PARA LA PREDICCI Ó N DE LA CALIDAD DE TABLEROS CONTRACHAPADOS

被引:0
|
作者
Urra-Gonzalez, Cynthia [1 ]
Ramos-Maldonado, Mario [2 ]
机构
[1] Univ Bio Bio, Fac Ingn, Dept Ingn Ind, Concepcion, Chile
[2] Univ Bio Bio, Fac Ingn, Dept Ingn Maderas, Concepcion, Chile
来源
关键词
Algorithms; supervised learning; wood industry; data engineering; predictive models; Ma-chine Learning; plywood; artificial neural networks; ARTIFICIAL NEURAL-NETWORK; PLYWOOD; STRENGTH; DEFECTS; WOOD;
D O I
10.4067/s0718-221x2023000100436
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Because of the impact on productivity and cost reduction, decision making in industrial processes is one of the most required aspects in the industry. Specifically in the panel industries, product quality depends on multiple variables, especially wood variability. Among other factors, quality depends on the adhesion of ve-neers or perpendicular tensile strength. The main objective of this study was to evaluate a Machine Learning approach to predict the adhesion under industrial conditions in the gluing and pre-pressing stage. The control variables that determine this adhesion are mainly: operational times, amount of adhesive, environmental con-ditions, and veneer temperature. Using Knowledge Discovery in Databases data analytics methodology, Artifi-cial Neural Networks and Support Vector Machine were evaluated. The sigmoid activation function was used with 3 hidden layers and 245 neurons. In addition to the Adam optimizer, Multi-LayerPerceptron, Artificial Neural Networks delivered the best accuracy levels of over 66 %. Sigmoid showed an accuracy of over 66 %, precision fit good to find positive results (70 %). Relu function obtained the best recall (over 74 %) showing a good capacity to identify reality. Results show that it is not sufficient to generate a data set using the averages of each process variable, since it is difficult to obtain better results with the algorithms evaluated. This work contributes to defining a methodology to be used in plywood plants using industrial data to train and validate Machine Learning models.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
  • [41] UN CAS DE SCHWANNOME DE LA JOUE
    MARCHAND
    PRESSE MEDICALE, 1953, 61 (11): : 220 - 220
  • [42] UN CAS DE MALADIE DE BOWEN DE LA VULVE
    WORINGER
    PRESSE MEDICALE, 1950, 58 (15): : 256 - 256
  • [43] Commemorating police over Latino deathConmemoración de la policía en contraste con la de la muerte de un latino
    Blanca A. Ramirez
    Latino Studies, 2024, 22 (4) : 610 - 626
  • [44] UN IHIBITEUR NOUVEAU DE LA TRYPSINE ET DE LA CHYMOTRYPSINE
    TRAUTSCHOLD, I
    SEBENING, H
    WERLE, E
    BULLETIN DE LA SOCIETE DE CHIMIE BIOLOGIQUE, 1964, 46 (01): : 221 - &
  • [45] La equidad en la campaña de vacunación COVID de la Provincia de Buenos Aires (Argentina): un análisis del Municipio de Quilmes
    Spadea, Agostina
    Oleiro Hidalgo, Maria
    Quevedo, Sofia
    Begue, Carolina
    L'Arco, Gabriela
    Perez, Adriana
    Cueto, Gerardo
    Konfino, Jonatan
    GLOBAL HEALTH PROMOTION, 2024, 31 (03) : 121 - 132
  • [46] UN 'CAPRICE DE LA NATURE' - GORDIMER,N
    WAUTHIER, C
    QUINZAINE LITTERAIRE, 1990, (552): : 13 - 13
  • [47] UN PROJET DEXPERIENCE POUR LA VERIFICATION DE LA THEORIE DE LA RELATIVITE
    METZ, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1966, 262 (01): : 104 - &
  • [48] ETUDE DE LA DIFFUSION DE LA LUMIERE PAR UN CYLINDRE DE CHLORURE DE SODIUM MONOCRISTALLIN
    GIRARD, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1962, 254 (17): : 3087 - &
  • [49] ROLE DE LA STRUCTURE REELE DANS LA DIFFUSION DE LA LUMIERE PAR UN MONOCRISTAL DE CHLORURE DE SODIUM
    TAUREL, L
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1952, 234 (25): : 2443 - 2445
  • [50] IMPACTO DE LA CALIDAD DE VIDA DE LOS HERMANOS DE LOS PACIENTES TRANSPLANTADOS RENALES.
    Velasco, J.
    Ferraris, V.
    Ferraris, J. R.
    Ghezzi, L. L.
    Coccia, P. P.
    PEDIATRIC TRANSPLANTATION, 2017, 21 : 102 - 102