Diagnostic model for preschool workers' unwillingness to continue working: Developed using machine-learning techniques

被引:0
|
作者
Matsuo, Moemi [1 ]
Matsumoto, Koutarou [2 ,7 ]
Higashijima, Misako [1 ]
Shirabe, Susumu [3 ]
Tanaka, Goro [4 ,5 ]
Yoshida, Yuri [5 ,6 ]
Higashi, Toshio [4 ]
Miyabara, Hiroya [1 ]
Komatsu, Youhei [1 ]
Iwanaga, Ryoichiro [4 ,5 ]
机构
[1] Nishi Kyushu Univ, Fac Rehabil Sci, Kanzaki, Saga, Japan
[2] Kurume Univ, Biostat Ctr, Kurume, Fukuoka, Japan
[3] Nagasaki Univ, Natl Res Ctr Control & Prevent Infect Dis, Nagasaki, Japan
[4] Nagasaki Univ, Grad Sch Biomed Sci, Unit Med Sci, Nagasaki, Japan
[5] Nagasaki Univ, Ctr Child Mental Hlth Care & Educ, Nagasaki, Japan
[6] Nagasaki Univ, Fac Educ, Nagasaki, Japan
[7] Kurume Univ, Biostat Ctr, 67 Asahimachi, Kurume, Fukuoka 8300011, Japan
关键词
diagnostic model; machine-learning (ML); mental health; turnover; work environment; KINDERGARTEN TEACHERS; TURNOVER INTENTION; JOB-SATISFACTION; SCHOOL; ENGAGEMENT; LEAVE;
D O I
10.1097/MD.0000000000032630
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The turnover of kindergarten teachers has drastically increased in the past 10 years. Reducing the turnover rates among preschool workers has become an important issue worldwide. Parents have avoided enrolling children in preschools due to insufficient care, which affects their ability to work. Therefore, this study developed a diagnostic model to understand preschool workers' unwillingness to continue working. A total of 1002 full-time preschool workers were divided into 2 groups. Predictors were drawn from general questionnaires, including those for mental health. We compared 3 algorithms: the least absolute shrinkage and selection operator, eXtreme Gradient Boosting, and logistic regression. Additionally, the SHapley Additive exPlanation was used to visualize the relationship between years of work experience and intention to continue working. The logistic regression model was adopted as the diagnostic model, and the predictors were "not living with children," "human relation problems with boss," "high risk of mental distress," and "work experience." The developed risk score and the optimal cutoff value were 14 points. By using the diagnostic model to determine workers' unwillingness to continue working, supervisors can intervene with workers who are experiencing difficulties at work and can help resolve their problems.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Forecasting the Bearing Capacity of the Driven Piles Using Advanced Machine-Learning Techniques
    Benbouras, Mohammed Amin
    Petrisor, Alexandru-Ionut
    Zedira, Hamma
    Ghelani, Laala
    Lefilef, Lina
    APPLIED SCIENCES-BASEL, 2021, 11 (22):
  • [22] Hardware Trojan Detection at Run-time Using Machine-Learning Techniques
    Chakrabarty, Krishnendu
    2020 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), 2020,
  • [23] Estimating flashpoints of fuels and chemical compounds using hybrid machine-learning techniques
    Amirkhani, Farid
    Dashti, Amir
    Abedsoltan, Hossein
    Mohammadi, Amir H.
    Chofreh, Abdoulmohammad Gholamzadeh
    Goni, Feybi Ariani
    Klemes, Jiri Jaromir
    FUEL, 2022, 323
  • [24] Modeling pulsed laser micromachining of micro geometries using machine-learning techniques
    Teixidor, D.
    Grzenda, M.
    Bustillo, A.
    Ciurana, J.
    JOURNAL OF INTELLIGENT MANUFACTURING, 2015, 26 (04) : 801 - 814
  • [25] Disentangling CO Chemistry in a Protoplanetary Disk Using Explanatory Machine-learning Techniques
    Diop, Amina
    Cleeves, L. Ilsedore
    Anderson, Dana E.
    Pegues, Jamila
    Plunkett, Adele
    ASTROPHYSICAL JOURNAL, 2024, 962 (01):
  • [26] Discovery of 118 New Ultracool Dwarf Candidates Using Machine-learning Techniques
    Brooks, Hunter
    Caselden, Dan
    Kirkpatrick, J. Davy
    Raghu, Yadukrishna
    Elachi, Charles A.
    Grigorian, Jake
    Trek, Asa
    Washburn, Andrew
    Higashimura, Hiro
    Meisner, Aaron M.
    Schneider, Adam C.
    Faherty, Jacqueline K.
    Marocco, Federico
    Gelino, Christopher R.
    Gagne, Jonathan
    Bickle, Thomas P.
    Tang, Shih-Yun
    Rothermich, Austin
    Burgasser, Adam J.
    Kuchner, Marc J.
    Beaulieu, Paul
    Bell, John
    Colin, Guillaume
    Colombo, Giovanni
    Dereveanco, Alexandru
    Flores, Deiby Pozo
    Glebov, Konstantin
    Gramaize, Leopold
    Hamlet, Les
    Hinckley, Ken
    Kabatnik, Martin
    Kiwy, Frank
    Martin, David W.
    Mendez, Raul F. Palma
    Pendrill, Billy
    Ruiz, Lizzeth
    Sanchez, John
    Sainio, Arttu
    Schumann, Jorg
    Schonau, Manfred
    Tanner, Christopher
    Stevnbak, Nikolaj
    Stenner, Andres
    Thevenot, Melina
    Thakur, Vinod
    Voloshin, Nikita V.
    Wdracki, Zbigniew
    ASTRONOMICAL JOURNAL, 2024, 168 (05):
  • [27] Assessment of land degradation using machine-learning techniques: A case of declining rangelands
    Yousefi, Saleh
    Pourghasemi, Hamid Reza
    Avand, Mohammadtaghi
    Janizadeh, Saeid
    Tavangar, Shahla
    Santosh, M.
    LAND DEGRADATION & DEVELOPMENT, 2021, 32 (03) : 1452 - 1466
  • [28] Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques
    Sirunyan, A. M.
    Tumasyan, A.
    Adam, W.
    Ambrogi, F.
    Bergauer, T.
    Brandstetter, J.
    Dragicevic, M.
    Eroe, J.
    Del Valle, A. Escalante
    Flechl, M.
    Fruehwirth, R.
    Jeitler, M.
    Krammer, N.
    Kraetschmer, I
    Liko, D.
    Madlener, T.
    Mikulec, I
    Rad, N.
    Schieck, J.
    Schoefbeck, R.
    Spanring, M.
    Spitzbart, D.
    Waltenberger, W.
    Wulz, C-E
    Zarucki, M.
    Drugakov, V
    Mossolov, V
    Gonzalez, J. Suarez
    Darwish, M. R.
    De Wolf, E. A.
    Di Croce, D.
    Janssen, X.
    Lelek, A.
    Pieters, M.
    Sfar, H. Rejeb
    Van Haevermaet, H.
    Van Mechelen, P.
    Van Putte, S.
    Van Remortel, N.
    Blekman, F.
    Bols, E. S.
    Chhibra, S. S.
    D'Hondt, J.
    De Clercq, J.
    Lontkovskyi, D.
    Lowette, S.
    Marchesini, I
    Moortgat, S.
    Python, Q.
    Skovpen, K.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (06):
  • [29] Evaluating the Surveillance System for Spotted Fever in Brazil Using Machine-Learning Techniques
    Lopez, Diego Montenegro
    de Mello, Flavio Luis
    Dias, Cristina Maria Giordano
    Almeida, Paula
    Araujo, Milton
    Magalhaes, Monica Avelar
    Gazeta, Gilberto Salles
    Brasil, Reginaldo Pecanha
    FRONTIERS IN PUBLIC HEALTH, 2017, 5
  • [30] Enhanced Heart Disease Classification Using Parallelization and Integrated Machine-Learning Techniques
    Panda, Subham
    Gupta, Rishik
    Kumar, Chandan
    Mishra, Rashi
    Gupta, Saransh
    Bhardwaj, Akash
    Kumar, Pratiksh
    Shukla, Prakhar
    Kumar, Bagesh
    COMPUTER VISION AND IMAGE PROCESSING, CVIP 2023, PT III, 2024, 2011 : 411 - 422