Iterative Numerical Methods for a Fredholm-Hammerstein Integral Equation with Modified Argument

被引:4
|
作者
Micula, Sanda [1 ]
机构
[1] Babes Bolyai Univ, Fac Math & Comp Sci, Dept Math, 1 M Kogalniceanu St, Cluj Napoca 400084, Romania
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 01期
关键词
Fredholm integral equations; modified argument; Picard iteration; numerical integration;
D O I
10.3390/sym15010066
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Iterative processes are a powerful tool for providing numerical methods for integral equations of the second kind. Integral equations with symmetric kernels are extensively used to model problems, e.g., optimization, electronic and optic problems. We analyze iterative methods for Fredholm-Hammerstein integral equations with modified argument. The approximation consists of two parts, a fixed point result and a quadrature formula. We derive a method that uses a Picard iterative process and the trapezium numerical integration formula, for which we prove convergence and give error estimates. Numerical experiments show the applicability of the method and the agreement with the theoretical results.
引用
收藏
页数:11
相关论文
共 50 条