Fredholm integral equations;
modified argument;
Picard iteration;
numerical integration;
D O I:
10.3390/sym15010066
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Iterative processes are a powerful tool for providing numerical methods for integral equations of the second kind. Integral equations with symmetric kernels are extensively used to model problems, e.g., optimization, electronic and optic problems. We analyze iterative methods for Fredholm-Hammerstein integral equations with modified argument. The approximation consists of two parts, a fixed point result and a quadrature formula. We derive a method that uses a Picard iterative process and the trapezium numerical integration formula, for which we prove convergence and give error estimates. Numerical experiments show the applicability of the method and the agreement with the theoretical results.
机构:
Indian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, India
VIT Univ, Dept Math, Vellore 632014, Tamil Nadu, IndiaIndian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, India
Mandal, Moumita
Nelakanti, Gnaneshwar
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, IndiaIndian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, India