A novel framework based on the multi-label classification for dynamic selection of classifiers

被引:5
|
作者
Elmi, Javad [1 ]
Eftekhari, Mahdi [1 ]
Mehrpooya, Adel [1 ,2 ]
Ravari, Mohammad Rezaei [1 ]
机构
[1] Shahid Bahonar Univ Kerman, Dept Comp Engn, Kerman, Iran
[2] Queensland Univ Technol, Fac Sci, Sch Math Sci, Brisbane, Australia
关键词
Multi-classifier systems (MCSs); Dynamic selection (DS); Competence measure; Multi-label classifiers; ENSEMBLE SELECTION; ACCURACY;
D O I
10.1007/s13042-022-01751-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-classifier systems (MCSs) are some kind of predictive models that classify instances by combining the output of an ensemble of classifiers given in a pool. With the aim of enhancing the performance of MCSs, dynamic selection (DS) techniques have been introduced and applied to MCSs. Dealing with each test sample classification, DS methods seek to perform the task of classifier selection so that only the most competent classifiers are selected. The principal subject regarding DS techniques is how the competence of classifiers corresponding to every new test sample classification task can be estimated. In traditional dynamic selection methods, for classifying an unknown test sample x, first, a local region of data that is similar to x is detected. Then, those classifiers that efficiently classify the data in the local region are also selected so as to perform the classification task for x. Therefore, the main effort of these methods is focused on one of the two following tasks: (i) to provide a measure for identifying a local region, or (ii) to provide a criterion for measuring the efficiency of classifiers in the local region (competence measure). This paper proposes a new version of dynamic selection techniques that does not follow the aforementioned approach. Our proposed method uses a multi-label classifier in the training phase to determine the appropriate set of classifiers directly (without applying any criterion such as a competence measure). In the generalization phase, the suggested method is employed efficiently so as to predict the appropriate set of classifiers for classifying the test sample x. It is remarkable that the suggested multi-label-based framework is the first method that uses multi-label classification concepts for dynamic classifier selection. Unlike the existing meta-learning methods for dynamic ensemble selection in the literature, our proposed method is very simple to implement and does not need meta-features. As the experimental results indicate, the suggested technique produces a good performance in terms of both classification accuracy and simplicity which is fairly comparable with that of the benchmark DS techniques. The results of conducting the Quade non-parametric statistical test corroborate the clear dominance of the proposed method over the other benchmark methods.
引用
收藏
页码:2137 / 2154
页数:18
相关论文
共 50 条
  • [41] Categorizing feature selection methods for multi-label classification
    Pereira, Rafael B.
    Plastino, Alexandre
    Zadrozny, Bianca
    Merschmann, Luiz H. C.
    ARTIFICIAL INTELLIGENCE REVIEW, 2018, 49 (01) : 57 - 78
  • [42] A lazy feature selection method for multi-label classification
    Pereira, Rafael B.
    Plastino, Alexandre
    Zadrozny, Bianca
    Merschmann, Luiz H. C.
    INTELLIGENT DATA ANALYSIS, 2021, 25 (01) : 21 - 34
  • [43] Optimization approach for feature selection in multi-label classification
    Lim, Hyunki
    Lee, Jaesung
    Kim, Dae-Won
    PATTERN RECOGNITION LETTERS, 2017, 89 : 25 - 30
  • [44] Feature Selection in Multi-label classification through MLQPFS
    Soheili, Majid
    Moghadam, Amir-Massoud Eftekhari
    2016 4TH INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, AND AUTOMATION (ICCIA), 2016, : 430 - 434
  • [45] Categorizing feature selection methods for multi-label classification
    Rafael B. Pereira
    Alexandre Plastino
    Bianca Zadrozny
    Luiz H. C. Merschmann
    Artificial Intelligence Review, 2018, 49 : 57 - 78
  • [46] Memetic feature selection algorithm for multi-label classification
    Lee, Jaesung
    Kim, Dae-Won
    INFORMATION SCIENCES, 2015, 293 : 80 - 96
  • [47] Measure Optimisation in Multi-label Classifiers
    Pillai, Ignazio
    Fumera, Giorgio
    Roli, Fabio
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 2424 - 2427
  • [48] Multi-objective Optimisation-Based Feature Selection for Multi-label Classification
    Khan, Mohammed Arif
    Ekbal, Asif
    Mencia, Eneldo Loza
    Fuernkranz, Johannes
    NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS, NLDB 2017, 2017, 10260 : 38 - 41
  • [49] Label Clustering for a Novel Problem Transformation in Multi-label Classification
    Sellah, Small
    Hilaire, Vincent
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2020, 26 (01) : 71 - 88
  • [50] Label distribution feature selection for multi-label classification with rough set
    Qian, Wenbin
    Huang, Jintao
    Wang, Yinglong
    Xie, Yonghong
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2021, 128 : 32 - 55