Growing Random Uniform d-ary Trees

被引:0
|
作者
Marckert, Jean-Francois [1 ]
机构
[1] Univ Bordeaux, CNRS, Bordeaux INP, LaBRI,UMR 5800, F-33400 Bordeaux, France
关键词
D O I
10.1007/s00026-022-00621-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T-d(n) be the set of d-ary rooted trees with n internal nodes. We give a method to construct a sequence (t(n), n >= 0), where, for any n >= 1, t(n) has the uniform distribution in T-d(n), and t(n) is constructed from t(n)(-1) by the addition of a new node, and a rearrangement of the structure of t(n-1). This method is inspired by Remy's algorithm which does this job in the binary case, but it is different from it. This provides a method for the random generation of a uniform d-ary tree in T-d(n) with a cost linear in n.
引用
收藏
页码:51 / 66
页数:16
相关论文
共 50 条
  • [21] New bounds on D-ary optimal codes
    Navarro, G
    Brisaboa, N
    INFORMATION PROCESSING LETTERS, 2005, 96 (05) : 178 - 184
  • [22] D-ary bounded-length Huffman coding
    Baer, Michael B.
    2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 896 - 900
  • [23] A LOWER BOUND ON THE REDUNDANCY OF D-ARY HUFFMAN CODES
    GOLIC, JD
    OBRADOVIC, MM
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1987, 33 (06) : 910 - 911
  • [24] Decycling d-ary n-dimensional Cubes
    Gao, Liqing
    Wang, Jian
    UTILITAS MATHEMATICA, 2020, 114 : 127 - 136
  • [25] Analysis of d-ARY tree algorithms with successive interference cancellation
    Vogel, Quirin
    Deshpande, Yash
    Stefanovic, Cedomir
    Kellerer, Wolfgang
    JOURNAL OF APPLIED PROBABILITY, 2024, 61 (03) : 1075 - 1105
  • [26] The pancyclic properties of d-ary n-dimensional cube
    Li, Zhaoxiang
    ARS COMBINATORIA, 2018, 140 : 135 - 148
  • [27] On VLSI decompositions for d-ary de Bruijn graphs (Extended abstract)
    Yamada, T
    Kawakita, H
    Nishiyama, T
    Ueno, S
    2005 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), VOLS 1-6, CONFERENCE PROCEEDINGS, 2005, : 1358 - 1361
  • [28] GENERALIZED HILTON CONSTRUCTION FOR EMBEDDING D-ARY QUASI-GROUPS
    CSIMA, J
    DISCRETE MATHEMATICS, 1986, 58 (02) : 195 - 197
  • [29] Solving Stochastic Root-Finding with Adaptive d-ary Search
    Yazidi, Anis
    Oommen, B. John
    2015 IEEE INTERNATIONAL CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS (EAIS), 2015,
  • [30] The d-deap: a fast and simple cache-aligned d-ary deap
    Jung, H
    INFORMATION PROCESSING LETTERS, 2005, 93 (02) : 63 - 67