Systematic discovery of recombinases for efficient integration of large DNA sequences into the human genome

被引:74
|
作者
Durrant, Matthew G. [1 ,2 ,3 ]
Fanton, Alison [2 ,4 ]
Tycko, Josh [3 ]
Hinks, Michaela [5 ]
Chandrasekaran, Sita S. [2 ,4 ]
Perry, Nicholas T. [2 ,4 ]
Schaepe, Julia [5 ]
Du, Peter P. [3 ,6 ]
Lotfy, Peter [7 ]
Bassik, Michael C. [3 ]
Bintu, Lacramioara [5 ]
Bhatt, Ami S. [3 ,8 ]
Hsu, Patrick D. [1 ,2 ,7 ,9 ,10 ]
机构
[1] Arc Inst, Palo Alto, CA 94304 USA
[2] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[3] Stanford Univ, Dept Genet, Stanford, CA 94305 USA
[4] Univ Calif Berkeley, Univ Calif San Francisco, Grad Program Bioengn, Berkeley, CA 94720 USA
[5] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[6] Stanford Univ, Canc Biol Program, Stanford, CA 94305 USA
[7] Salk Inst Biol Studies, Lab Mol & Cell Biol, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USA
[8] Stanford Univ, Dept Med Hematol, Stanford, CA 94305 USA
[9] Univ Calif Berkeley, Innovat Genom Inst, Berkeley, CA 94720 USA
[10] Univ Calif Berkeley, Ctr Computat Biol, Berkeley, CA 94720 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
SITE-SPECIFIC INTEGRATION; BINDS PHI-C31 INTEGRASE; PIGGYBAC TRANSPOSASE; TARGETED INTEGRATION; PROTEIN; ELEMENTS; EXPRESSION; ALIGNMENT; CELLS; CRISPR-CAS9;
D O I
10.1038/s41587-022-01494-w
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Large serine recombinases (LSRs) are DNA integrases that facilitate the site-specific integration of mobile genetic elements into bacterial genomes. Only a few LSRs, such as Bxb1 and PhiC31, have been characterized to date, with limited efficiency as tools for DNA integration in human cells. In this study, we developed a computational approach to identify thousands of LSRs and their DNA attachment sites, expanding known LSR diversity by >100-fold and enabling the prediction of their insertion site specificities. We tested their recombination activity in human cells, classifying them as landing pad, genome-targeting or multi-targeting LSRs. Overall, we achieved up to seven-fold higher recombination than Bxb1 and genome integration efficiencies of 40-75% with cargo sizes over 7 kb. We also demonstrate virus-free, direct integration of plasmid or amplicon libraries for improved functional genomics applications. This systematic discovery of recombinases directly from microbial sequencing data provides a resource of over 60 LSRs experimentally characterized in human cells for large-payload genome insertion without exposed DNA double-stranded breaks. Screening recombinases identifies tools for inserting large sequences into the human genome.
引用
收藏
页码:488 / +
页数:22
相关论文
共 50 条
  • [31] Discovery and characterization of chromatin states for systematic annotation of the human genome
    Jason Ernst
    Manolis Kellis
    Nature Biotechnology, 2010, 28 : 817 - 825
  • [32] Discovery and Characterization of Chromatin States for Systematic Annotation of the Human Genome
    Ernst, Jason
    Kellis, Manolis
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, 2011, 6577 : 53 - 53
  • [33] THE DISTRIBUTION OF INTERSPERSED REPETITIVE DNA-SEQUENCES IN THE HUMAN GENOME
    MOYZIS, RK
    TORNEY, DC
    MEYNE, J
    BUCKINGHAM, JM
    WU, JR
    BURKS, C
    SIROTKIN, KM
    GOAD, WB
    GENOMICS, 1989, 4 (03) : 273 - 289
  • [34] Thermodynamic properties of DNA sequences: characteristic values for the human genome
    Koehler, RT
    Peyret, N
    BIOINFORMATICS, 2005, 21 (16) : 3333 - 3339
  • [35] Integration of telomeric DNA sequences with the human reference sequence.
    Riethman, HC
    Moyzis, R
    Morse, E
    Hu, L
    Grady, D
    Chi, H
    Paul, S
    Xiang, Z
    AMERICAN JOURNAL OF HUMAN GENETICS, 2000, 67 (04) : 22 - 22
  • [36] HUMAN CYTOMEGALOVIRUS DNA-SEQUENCES WITH HOMOLOGIES TO THE CELLULAR GENOME
    RUGER, R
    BORNKAMM, GW
    FLECKENSTEIN, B
    JOURNAL OF GENERAL VIROLOGY, 1984, 65 (AUG): : 1351 - 1364
  • [37] Efficient site-specific integration of large genes in mammalian cells via continuously evolved recombinases and prime editing
    Pandey, Smriti
    Gao, Xin D.
    Krasnow, Nicholas A.
    McElroy, Amber
    Tao, Y. Allen
    Duby, Jordyn E.
    Steinbeck, Benjamin J.
    McCreary, Julia
    Pierce, Sarah E.
    Tolar, Jakub
    Meissner, Torsten B.
    Chaikof, Elliot L.
    Osborn, Mark J.
    Liu, David R.
    NATURE BIOMEDICAL ENGINEERING, 2025, 9 (01): : 22 - 39
  • [38] Efficient precise integration of large DNA sequences with 3'-overhang dsDNA donors using CRISPR/Cas9
    Han, Wenjie
    Li, Zhigang
    Guo, Yijun
    He, Kaining
    Li, Wenqing
    Xu, Caoling
    Ge, Lishuang
    He, Miao
    Yin, Xue
    Zhou, Junxiang
    Li, Chengxu
    Yao, Dongbao
    Bao, Jianqiang
    Liang, Haojun
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (22)
  • [39] Selection of target sites for mobile DNA integration in the human genome
    Berry, Charles
    Hannenhalli, Sridhar
    Leipzig, Jeremy
    Bushman, Frederic D.
    PLOS COMPUTATIONAL BIOLOGY, 2006, 2 (11) : 1450 - 1462
  • [40] Bleomycin enhances random integration of transfected DNA into a human genome
    Nakayama, C
    Adachi, N
    Koyama, H
    MUTATION RESEARCH-DNA REPAIR, 1998, 409 (01): : 1 - 10