Zeros of modular forms and Faber polynomials

被引:0
|
作者
Rudnick, Zeev [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
基金
欧洲研究理事会; 以色列科学基金会; 欧盟地平线“2020”;
关键词
MASS;
D O I
10.1112/mtk.12244
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the zeros of cusp forms of large weight for the modular group, which have a very large order of vanishing at infinity, so that they have a fixed number D$D$ of finite zeros in the fundamental domain. We show that for large weight the zeros of these forms cluster near D$D$ vertical lines, with the zeros of a weight k$k$ form lying at height approximately logk$\log k$. This is in contrast to previously known cases, such as Eisenstein series, where the zeros lie on the circular part of the boundary of the fundamental domain, or the case of cuspidal Hecke eigenforms where the zeros are uniformly distributed in the fundamental domain. Our method uses the Faber polynomials. We show that for our class of cusp forms, the associated Faber polynomials, suitably renormalized, converge to the truncated exponential polynomial of degree D$D$.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] On the zeros of weakly holomorphic modular forms
    Sanoli Gun
    Biswajyoti Saha
    Archiv der Mathematik, 2014, 102 : 531 - 543
  • [22] Transcendental zeros of certain modular forms
    Gun, Sanoli
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2006, 2 (04) : 549 - 553
  • [23] Hecke Operators and Zeros of Modular Forms
    Victor Manuel Aricheta
    Richell Celeste
    Fidel Nemenzo
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 1249 - 1257
  • [24] Modular forms and period polynomials
    Pasol, Vicentiu
    Popa, Alexandru A.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 : 713 - 743
  • [25] ON FABER POLYNOMIALS AND FABER EXPANSIONS
    KOVARI, T
    POMMEREN.C
    MATHEMATISCHE ZEITSCHRIFT, 1967, 99 (03) : 193 - &
  • [26] FABER POLYNOMIALS AND FABER SERIES
    CURTISS, JH
    AMERICAN MATHEMATICAL MONTHLY, 1971, 78 (06): : 577 - &
  • [27] Double interlacing between zeros of modular forms
    Xue, Hui
    Zhu, Daozhou
    RAMANUJAN JOURNAL, 2023, 60 (02): : 463 - 483
  • [28] Zeros of modular forms of half integral weight
    Folsom A.
    Jenkins P.
    Research in Number Theory, 2 (1)
  • [29] Interlacing properties for zeros of a family of modular forms
    Frendreiss, William
    Gao, Jennifer
    Lei, Austin
    Woodall, Amy
    Xue, Hui
    Zhu, Daozhou
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (02) : 441 - 470
  • [30] On the zeros of a certain family of weakly modular forms
    Saradha, N.
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2024, 39 (01)