Two-dimensional total absorption spectroscopy with conditional generative adversarial networks

被引:0
|
作者
Dembski, C. [1 ,2 ,3 ,7 ]
Kuchera, M. P. [4 ,6 ]
Liddick, S. [5 ]
Ramanujan, R. [6 ]
Spyrou, A. [1 ,2 ,3 ]
机构
[1] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[2] Michigan State Univ, Facil Rare Isotope Beams, E Lansing, MI 48824 USA
[3] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA
[4] Davidson Coll, Dept Phys, Davidson, NC 28035 USA
[5] Michigan State Univ, Dept Chem, E Lansing, MI 44824 USA
[6] Davidson Coll, Dept Math & Comp Sci, Davidson, NC 28035 USA
[7] Univ Notre Dame, Dept Phys & Astron, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
Total absorption spectroscopy; Unfolding; Machine learning; Neural networks; Conditional generative adversarial networks; BETA-DECAY; IDENTIFICATION;
D O I
10.1016/j.nima.2023.169026
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We explore the use of machine learning techniques to remove the response of large volume gamma-ray detectors from experimental spectra. Segmented gamma-ray total absorption spectrometers (TAS) allow for the simultaneous measurement of individual gamma-ray energy (E-gamma) and total excitation energy (E-x). Analysis of TAS detector data is complicated by the fact that the E-x and E-gamma quantities are correlated, and therefore, techniques that simply unfold using E-x and E-gamma response functions independently are not as accurate. In this work, we investigate the use of conditional generative adversarial networks (cGANs) to simultaneously unfold E-x and E-gamma data in TAS detectors. Specifically, we employ a Pix2Pix cGAN, a generative modeling technique based on recent advances in deep learning, to treat (E-x,E- E-gamma) matrix unfolding as an image-to-image translation problem. We present results for simulated and experimental matrices of single-gamma and double-gamma decay cascades. Our model demonstrates characterization capabilities within detector resolution limits for upwards of 93% of simulated test cases.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Conditional Independence Testing using Generative Adversarial Networks
    Bellot, Alexis
    van der Schaar, Mihaela
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [22] PRGAN: Personalized Recommendation with Conditional Generative Adversarial Networks
    Wen, Jing
    Chen, Bi-Yi
    Wang, Chang-Dong
    Tian, Zhihong
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 729 - 738
  • [23] Conditional Generative Adversarial Networks for modelling fuel sprays
    Ates, Cihan
    Karwan, Farhad
    Okraschevski, Max
    Koch, Rainer
    Bauer, Hans-Joerg
    ENERGY AND AI, 2023, 12
  • [24] The effect of loss function on conditional generative adversarial networks
    Abu-Srhan, Alaa
    Abushariah, Mohammad A. M.
    Al-Kadi, Omar S.
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (09) : 6977 - 6988
  • [25] Conditional generative adversarial siamese networks for object tracking
    Song J.-H.
    Zhang J.
    Liu Y.-J.
    Yu Y.
    Kongzhi yu Juece/Control and Decision, 2021, 36 (05): : 1110 - 1118
  • [26] Conditional Generative Adversarial Networks for Inorganic Chemical Compositions
    Sawada, Yoshihide
    Morikawa, Koji
    Fujii, Mikiya
    CHEMISTRY LETTERS, 2021, 50 (04) : 623 - 626
  • [27] Ultrasonic imaging using conditional generative adversarial networks
    Molinier, Nathan
    Painchaud-April, Guillaume
    Le Duff, Alain
    Toews, Matthew
    Belanger, Pierre
    ULTRASONICS, 2023, 133
  • [28] Quantum State Tomography with Conditional Generative Adversarial Networks
    Ahmed, Shahnawaz
    Sanchez Munoz, Carlos
    Nori, Franco
    Kockum, Anton Frisk
    PHYSICAL REVIEW LETTERS, 2021, 127 (14)
  • [29] CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS FOR ACOUSTIC ECHO CANCELLATION
    Pastor-Naranjo, Fran
    del Amor, Rocio
    Silva-Rodriguez, Julio
    Ferrer, Miguel
    Pinero, Gema
    Naranjo, Valery
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 85 - 89
  • [30] A framework for personalized recommendation with conditional generative adversarial networks
    Jing Wen
    Xi-Ran Zhu
    Chang-Dong Wang
    Zhihong Tian
    Knowledge and Information Systems, 2022, 64 : 2637 - 2660