Two-dimensional total absorption spectroscopy with conditional generative adversarial networks

被引:0
|
作者
Dembski, C. [1 ,2 ,3 ,7 ]
Kuchera, M. P. [4 ,6 ]
Liddick, S. [5 ]
Ramanujan, R. [6 ]
Spyrou, A. [1 ,2 ,3 ]
机构
[1] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[2] Michigan State Univ, Facil Rare Isotope Beams, E Lansing, MI 48824 USA
[3] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA
[4] Davidson Coll, Dept Phys, Davidson, NC 28035 USA
[5] Michigan State Univ, Dept Chem, E Lansing, MI 44824 USA
[6] Davidson Coll, Dept Math & Comp Sci, Davidson, NC 28035 USA
[7] Univ Notre Dame, Dept Phys & Astron, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
Total absorption spectroscopy; Unfolding; Machine learning; Neural networks; Conditional generative adversarial networks; BETA-DECAY; IDENTIFICATION;
D O I
10.1016/j.nima.2023.169026
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We explore the use of machine learning techniques to remove the response of large volume gamma-ray detectors from experimental spectra. Segmented gamma-ray total absorption spectrometers (TAS) allow for the simultaneous measurement of individual gamma-ray energy (E-gamma) and total excitation energy (E-x). Analysis of TAS detector data is complicated by the fact that the E-x and E-gamma quantities are correlated, and therefore, techniques that simply unfold using E-x and E-gamma response functions independently are not as accurate. In this work, we investigate the use of conditional generative adversarial networks (cGANs) to simultaneously unfold E-x and E-gamma data in TAS detectors. Specifically, we employ a Pix2Pix cGAN, a generative modeling technique based on recent advances in deep learning, to treat (E-x,E- E-gamma) matrix unfolding as an image-to-image translation problem. We present results for simulated and experimental matrices of single-gamma and double-gamma decay cascades. Our model demonstrates characterization capabilities within detector resolution limits for upwards of 93% of simulated test cases.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Generative Adversarial Networks for Inverse Design of Two-Dimensional Spinodoid Metamaterials
    Liu, Sheng
    Acar, Pinar
    AIAA JOURNAL, 2024, 62 (07) : 2433 - 2442
  • [2] Prediction and control of two-dimensional decaying turbulence using generative adversarial networks
    Kim, Jiyeon
    Kim, Junhyuk
    Lee, Changhoon
    JOURNAL OF FLUID MECHANICS, 2024, 981
  • [3] Two-dimensional prediction of the superposition film cooling with trench based on conditional generative adversarial network
    Wang, Yaning
    Wang, Zirui
    Wang, Wen
    Tao, Guocheng
    Shen, Weiqi
    Cui, Jiahuan
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2023, 184
  • [4] Conditional Generative Adversarial Capsule Networks
    Kong R.
    Huang G.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (01): : 94 - 107
  • [5] Bidirectional Conditional Generative Adversarial Networks
    Jaiswal, Ayush
    AbdAlmageed, Wael
    Wu, Yue
    Natarajan, Premkumar
    COMPUTER VISION - ACCV 2018, PT III, 2019, 11363 : 216 - 232
  • [6] Conditional Graphical Generative Adversarial Networks
    Li C.-X.
    Zhu J.
    Zhang B.
    Ruan Jian Xue Bao/Journal of Software, 2020, 31 (04): : 1002 - 1008
  • [7] The Defense of Adversarial Example with Conditional Generative Adversarial Networks
    Yu, Fangchao
    Wang, Li
    Fang, Xianjin
    Zhang, Youwen
    SECURITY AND COMMUNICATION NETWORKS, 2020, 2020
  • [8] Conditional Generative Adversarial Networks with Adversarial Attack and Defense for Generative Data Augmentation
    Baek, Francis
    Kim, Daeho
    Park, Somin
    Kim, Hyoungkwan
    Lee, SangHyun
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2022, 36 (03)
  • [9] Generative adversarial networks for reconstruction of three-dimensional porous media from two-dimensional slices
    Volkhonskiy, Denis
    Muravleva, Ekaterina
    Sudakov, Oleg
    Orlov, Denis
    Burnaev, Evgeny
    Koroteev, Dmitry
    Belozerov, Boris
    Krutko, Vladislav
    PHYSICAL REVIEW E, 2022, 105 (02)
  • [10] Shadow Detection with Conditional Generative Adversarial Networks
    Vu Nguyen
    Vicente, Tomas F. Yago
    Zhao, Maozheng
    Hoai, Minh
    Samaras, Dimitris
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 4520 - 4528