Life cycle assessment and techno-economic analysis of sustainable bioenergy production: a review

被引:29
|
作者
Osman, Ahmed I. [1 ]
Fang, Bingbing [2 ]
Zhang, Yubing [2 ]
Liu, Yunfei [2 ]
Yu, Jiacheng [2 ]
Farghali, Mohamed [3 ,4 ]
Rashwan, Ahmed K. [5 ]
Chen, Zhonghao [2 ]
Chen, Lin [6 ,7 ]
Ihara, Ikko [3 ]
Rooney, David W. [1 ]
Yap, Pow-Seng [2 ]
机构
[1] Queens Univ Belfast, Sch Chem & Chem Engn, Belfast BT9 5AG, North Ireland
[2] Xian Jiaotong Liverpool Univ, Dept Civil Engn, Suzhou 215123, Peoples R China
[3] Kobe Univ, Dept Agr Engn & Socioecon, Kobe 6578501, Japan
[4] Assiut Univ, Fac Vet Med, Dept Anim Poultry Hyg & Environm Sanitat, Assiut 71526, Egypt
[5] South Valley Univ, Fac Agr, Dept Food & Dairy Sci, Qena 83523, Egypt
[6] Chongqing Univ, Sch Civil Engn, Chongqing 400045, Peoples R China
[7] Chongqing Univ, Key Lab New Technol Construct Cities Mt Area, Minist Educ, Chongqing 400045, Peoples R China
关键词
Life cycle assessment; Techno-economic analysis; Sustainable bioenergy production; Bioenergy chemical aspect; Policy implication; WASTE-TO-ENERGY; BIODIESEL PRODUCTION; LIGNOCELLULOSIC BIOMASS; BIOGAS PRODUCTION; WATER FOOTPRINT; BIOETHANOL PRODUCTION; ETHANOL-PRODUCTION; WHEAT-STRAW; ANAEROBIC-DIGESTION; HYDROGEN-PRODUCTION;
D O I
10.1007/s10311-023-01694-z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The global expansion of the bioenergy industry raises concerns, emphasizing the need for careful evaluation and sustainable management. To facilitate this, life cycle assessments beyond greenhouse gas emissions and energy balance are essential, along with the standardization of assessment methodologies to enable meaningful comparisons. Here, we review life cycle assessment, chemical aspects, and policy implication of bioenergy production. We discuss life cycle assessment in terms of concepts, methods, impacts, greenhouse gases, land use, water consumption, bioethanol, biodiesel, biogas, and techno-economic analysis. Chemical aspects comprise reaction processes and means to improve efficiency. Concerning policies, tools, and frameworks that encourage sustainable energy production are presented. We found that carbon dioxide removal ranges from 45 to 99% in various bioenergy processes. The review also emphasizes the importance of chemistry in advancing sustainable bioenergy production for a more sustainable and secure energy future.
引用
收藏
页码:1115 / 1154
页数:40
相关论文
共 50 条
  • [31] Are green solvents truly green? Integrating life cycle assessment and techno-economic analysis for sustainable membrane fabrication
    Hong, Seang Uyin
    Wang, Yida
    Soh, Leong Sing
    Yong, Wai Fen
    GREEN CHEMISTRY, 2023, 25 (11) : 4501 - 4512
  • [32] Techno-economic and life cycle assessment of triisobutane production and its suitability as biojet fuel
    Vela-Garcia, Nicolas
    Bolonio, David
    Maria Mosquera, Ana
    Ortega, Marcelo F.
    Garcia-Martinez, Maria-Jesus
    Canoira, Laureano
    APPLIED ENERGY, 2020, 268
  • [33] Plastic Recycling: A Review on Life Cycle, Methods, Misconceptions, and Techno-Economic Analysis
    Salahuddin, Usman
    Sun, Jiyu
    Zhu, Chunxiang
    Wu, Mudi
    Zhao, Binchao
    Gao, Pu-Xian
    ADVANCED SUSTAINABLE SYSTEMS, 2023, 7 (07)
  • [34] Negative Emission Energy Production Technologies: A Techno-Economic and Life Cycle Analyses Review
    Li, Wenqin
    Wright, Mark M.
    ENERGY TECHNOLOGY, 2020, 8 (11)
  • [35] Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review
    Patel, Madhumita
    Zhang, Xiaolei
    Kumar, Amit
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 53 : 1486 - 1499
  • [36] Techno-economic and life cycle assessments of anaerobic digestion - A review
    Rajendran, Karthik
    Murthy, Ganti S.
    BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY, 2019, 20
  • [37] Techno-economic Analysis and Life Cycle Assessment of Gluconic Acid and Xylonic Acid Production from Waste Materials
    Balchandani, Sweta
    Alipanah, Majid
    Barboza, Caitlin A.
    Ferreira, Rafael G.
    Reed, David W.
    Fujita, Yoshiko
    Thompson, Vicki S.
    Jin, Hongyue
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (50) : 17708 - 17717
  • [38] Life cycle assessment and techno-economic analysis of biomass-to-hydrogen production with methane tri-reforming
    Li, Guoxuan
    Wang, Shuai
    Zhao, Jiangang
    Qi, Huaqing
    Ma, Zhaoyuan
    Cui, Peizhe
    Zhu, Zhaoyou
    Gao, Jun
    Wang, Yinglong
    ENERGY, 2020, 199
  • [39] Life-cycle assessment and techno-economic analysis of the production of wood vinegar from stem: a case study
    Zheng, Ji-Lu
    Zhu, Ya-Hong
    Dong, Yan-Yan
    Zhu, Ming-Qiang
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2023, 17 (08) : 1109 - 1121
  • [40] Integrated Stochastic Life Cycle Assessment and Techno-Economic Analysis for Shrub Willow Production in the Northeastern United States
    Frank, Jenny
    Therasme, Obste
    Volk, Timothy A.
    Brown, Tristan
    Malmsheimer, Robert W.
    Fortier, Marie-Odile
    Eisenbies, Mark H.
    Ha, HakSoo
    Heavey, Justin
    SUSTAINABILITY, 2022, 14 (15)