Transition-Metal Sulfides for High-Performance Lithium Sulfide Cathodes in All-Solid-State Lithium-Sulfur Batteries

被引:4
|
作者
Gamo, Hirotada [1 ,2 ]
Hikima, Kazuhiro [1 ]
Matsuda, Atsunori [1 ]
机构
[1] Toyohashi Univ Technol, Dept Elect & Elect Informat Engn, 1-1 Hibarigaoka, Tempaku Cho, Toyohashi, Aichi 4418580, Japan
[2] Natl Inst Adv Ind Sci & Technol, Res Inst Electrochem Energy, Dept Energy & Environm, 1-8-31 Midorigaoka, Ikeda, Osaka 5638577, Japan
来源
ACS OMEGA | 2023年 / 8卷 / 48期
基金
日本科学技术振兴机构;
关键词
ELECTROCHEMICAL REDOX; ELECTROLYTE; STABILITY; CARBON; LI2S;
D O I
10.1021/acsomega.3c05635
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
All-solid-state lithium-sulfur batteries (ASLSBs) have been attracting attention as next-generation batteries because of their high theoretical energy density, which exceeds that of traditional lithium-ion batteries. However, the performance of ASLSBs is limited by the sluggish redox reaction kinetics of lithium sulfide (Li2S) and S-8 cathodes and the electrochemical degradation of cathode materials and solid electrolytes during cycling. Herein, we report a cathode design consisting of Li2S and transition-metal sulfides. This cathode design enhances the redox reaction kinetics of the cathode and suppresses interfacial degradation between the cathodes and solid electrolytes in the composite cathodes. The interface design uses titanium disulfide, molybdenum sulfide (MoS2), and tungsten sulfide to facilitate redox reaction kinetics, which improves the practical performance of ASLSBs. Among the composite cathodes examined in this work, the Li2S-MoS2 composite cathode exhibited the highest discharge capacity of 661 mA h g(-1) (2.09 mA h cm(-2)) after 100 cycles. Electrochemical impedance analysis demonstrated that transition-metal sulfides, particularly MoS2, suppressed the increase in resistance through cycling of the composite cathodes. This finding suggests that transition-metal sulfides in Li2S composite cathodes multifunction as redox mediators and buffer layers, improving practical battery performance. Therefore, the electrode design offered in this study enhances the electrochemical utilization and long-term stability of ASLSBs.
引用
收藏
页码:45557 / 45565
页数:9
相关论文
共 50 条
  • [31] All-Solid-State Lithium-Sulfur Batteries Enhanced by Redox Mediators
    Gao, Xin
    Zheng, Xueli
    Tsao, Yuchi
    Zhang, Pu
    Xiao, Xin
    Ye, Yusheng
    Li, Jun
    Yang, Yufei
    Xu, Rong
    Bao, Zhenan
    Cui, Yi
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (43) : 18188 - 18195
  • [32] A review on 1D materials for all-solid-state lithium-ion batteries and all-solid-state lithium-sulfur batteries
    Yang, Qi
    Deng, Nanping
    Zhao, Yixia
    Gao, Lu
    Cheng, Bowen
    Kang, Weimin
    CHEMICAL ENGINEERING JOURNAL, 2023, 451
  • [33] Dry electrode technology for scalable and flexible high-energy sulfur cathodes in all-solid-state lithium-sulfur batteries
    Jiang-Kui Hu
    Hong Yuan
    Shi-Jie Yang
    Yang Lu
    Shuo Sun
    Jia Liu
    Yu-Long Liao
    Shuai Li
    Chen-Zi Zhao
    Jia-Qi Huang
    Journal of Energy Chemistry, 2022, 71 (08) : 612 - 618
  • [34] High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte
    Chen, Maohua
    Adams, Stefan
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (03) : 697 - 702
  • [35] High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte
    Maohua Chen
    Stefan Adams
    Journal of Solid State Electrochemistry, 2015, 19 : 697 - 702
  • [36] Dry electrode technology for scalable and flexible high-energy sulfur cathodes in all-solid-state lithium-sulfur batteries
    Hu, Jiang-Kui
    Yuan, Hong
    Yang, Shi-Jie
    Lu, Yang
    Sun, Shuo
    Liu, Jia
    Liao, Yu-Long
    Li, Shuai
    Zhao, Chen-Zi
    Huang, Jia-Qi
    JOURNAL OF ENERGY CHEMISTRY, 2022, 71 : 612 - 618
  • [37] Polythiocyanogen as Cathode Materials for High Temperature All-Solid-State Lithium-Sulfur Batteries
    Wang, Shen
    Zhou, Jianbin
    Feng, Shijie
    Patel, Maansi
    Lu, Bingyu
    Li, Weikang
    Soulen, Charles
    Feng, Jiaqi
    Meng, Ying Shirley
    Liu, Ping
    ACS ENERGY LETTERS, 2023, 8 (06) : 2699 - 2706
  • [38] Thermal Conductive 2D Boron Nitride for High-Performance All-Solid-State Lithium-Sulfur Batteries
    Yin, Xuesong
    Wang, Liu
    Kim, Yeongae
    Ding, Ning
    Kong, Junhua
    Safanama, Dorsasadat
    Zheng, Yun
    Xu, Jianwei
    Repaka, Durga Venkata Maheswar
    Hippalgaonkar, Kedar
    Lee, Seok Woo
    Adams, Stefan
    Zheng, Guangyuan Wesley
    ADVANCED SCIENCE, 2020, 7 (19)
  • [39] Tailoring the Interface between Sulfur and Sulfide Solid Electrolyte for High-Areal-Capacity All-Solid-State Lithium-Sulfur Batteries
    Kim, Hun
    Choi, Ha-Neul
    Hwang, Jang-Yeon
    Yoon, Chong Seung
    Sun, Yang-Kook
    ACS ENERGY LETTERS, 2023, 8 (10) : 3971 - 3979
  • [40] Interface Design for High-Performance All-Solid-State Lithium Batteries
    Wan, Hongli
    Zhang, Bao
    Liu, Sufu
    Wang, Zeyi
    Xu, Jijian
    Wang, Chunsheng
    ADVANCED ENERGY MATERIALS, 2024, 14 (19)