Delamination Detection Framework for the Imbalanced Dataset in Laminated Composite Using Wasserstein Generative Adversarial Network-Based Data Augmentation

被引:7
|
作者
Kim, Sungjun [1 ]
Azad, Muhammad Muzammil [2 ]
Song, Jinwoo [2 ]
Kim, Heungsoo [2 ]
机构
[1] Dongguk Univ Seoul, Dept Mech Engn, Smart Mat & Design Lab SMD LAB, 30 Pildong Ro,1 Gil, Seoul 04620, South Korea
[2] Dongguk Univ Seoul, Dept Mech Robot & Energy Engn, 30 Pildong Ro,1 Gil, Seoul 04620, South Korea
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 21期
基金
新加坡国家研究基金会;
关键词
PHM; fault diagnosis; data imbalance; laminated composite; WGAN; FAULT-DIAGNOSIS; IRT-GAN; CLASSIFICATION; SIGNALS; WAVELET;
D O I
10.3390/app132111837
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As laminated composites are applied more commonly, Prognostics and Health Management (PHM) techniques for the maintenance of composite systems are also attracting attention. However, applying PHM techniques to a composite system is challenging due to the data imbalance problem from the lack of failure data and unpredictable failure cases. Despite numerous studies conducted to address this limitation, including techniques like data augmentation and transfer learning, significant challenges remain. In this study, the Wasserstein Generative Adversarial Network (WGAN) model using a time-series data augmentation technique is proposed as a solution to the data imbalance problem. To ensure the performance of the WGAN model, time-series data augmentation of experimental data is executed with a frequency analysis. After that, a One-Dimensional Convolutional Neural Network (1D CNN) is used for fault diagnosis in laminated composites, validating the performance improvement after data augmentation. The proposed data augmentation significantly elevated the performance of the 1D CNN classification model compared to its non-augmented counterpart. Specifically, the accuracy increased from 89.20% to 91.96%. The precision improved remarkably from 29.76% to 74.10%, and its sensitivity rose from 33.33% to 94.39%. Collectively, these enhancements highlight the vital role of data augmentation in improving fault diagnosis performance.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] A Wasserstein Generative Adversarial Network-Gradient Penalty-Based Model with Imbalanced Data Enhancement for Network Intrusion Detection
    Lee, Gwo-Chuan
    Li, Jyun-Hong
    Li, Zi-Yang
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [12] Data Augmentation for Imbalanced HRRP Recognition Using Deep Convolutional Generative Adversarial Network
    Song, Yiheng
    Li, Yang
    Wang, Yanhua
    Hu, Cheng
    IEEE ACCESS, 2020, 8 : 201686 - 201695
  • [13] Generative Adversarial Network-Based Network Anomaly Detection with Unlabeled Data
    Zhang, Qing
    Cai, Chao
    Qin, Xiaofei
    Wang, Yuzhu
    Cao, Kang
    2023 20TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON SENSING, COMMUNICATION, AND NETWORKING, SECON, 2023,
  • [14] Dual Wasserstein generative adversarial network condition: A generative adversarial network-based acoustic impedance inversion method
    Wang, Zixu
    Wang, Shoudong
    Zhou, Chen
    Cheng, Wanli
    GEOPHYSICS, 2022, 87 (06) : R401 - R411
  • [15] Dual Wasserstein generative adversarial network condition: A generative adversarial network-based acoustic impedance inversion method
    Wang, Zixu
    Wang, Shoudong
    Zhou, Chen
    Cheng, Wanli
    Geophysics, 2022, 87 (06):
  • [16] Predicting Chern numbers in photonic crystals using generative adversarial network-based data augmentation
    Sun, Ao
    Wu, Haotian
    Guo, Jingxuan
    Zong, Cheng
    Huang, Zhong
    Chen, Jing
    OPTICS EXPRESS, 2025, 33 (02): : 3005 - 3012
  • [17] One-dimensional Data Augmentation Using a Wasserstein Generative Adversarial Network with Supervised Signal
    Lou, Huan
    Qi, Zongfeng
    Li, Jianxun
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 1896 - 1901
  • [18] Partial Discharge Data Augmentation Based on Improved Wasserstein Generative Adversarial Network With Gradient Penalty
    Zhu, Guangya
    Zhou, Kai
    Lu, Lu
    Fu, Yao
    Liu, Zhaogui
    Yang, Xiaomin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (05) : 6565 - 6575
  • [19] Wasserstein Generative Adversarial Networks Based Data Augmentation for Radar Data Analysis
    Lee, Hansoo
    Kim, Jonggeun
    Kim, Eun Kyeong
    Kim, Sungshin
    APPLIED SCIENCES-BASEL, 2020, 10 (04):
  • [20] Spoken Keyword Detection Based on Wasserstein Generative Adversarial Network
    Zhao, Wen
    Kun, She
    Hao, Chen
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 1279 - 1284