Improving air quality assessment using physics-inspired deep graph learning

被引:5
|
作者
Li, Lianfa [1 ,2 ]
Wang, Jinfeng [1 ]
Franklin, Meredith [2 ,3 ]
Yin, Qian [1 ]
Wu, Jiajie [1 ]
Camps-Valls, Gustau [4 ]
Zhu, Zhiping [1 ]
Wang, Chengyi [5 ]
Ge, Yong [1 ]
Reichstein, Markus [6 ]
机构
[1] Chinese Acad Sci, State Key Lab Resources & Environm Informat Syst, Inst Geog Sci & Nat Resources Res, Beijing, Peoples R China
[2] Univ Southern Calif, Dept Prevent Med, Los Angeles, CA 90007 USA
[3] Univ Toronto, Dept Stat Sci, Toronto, ON, Canada
[4] Univ Valencia, Image Proc Lab IPL, Valencia, Spain
[5] Chinese Acad Sci, Aerosp Informat Res Inst, Natl Engn Res Ctr Geomat, Beijing, Peoples R China
[6] Max Planck Inst Biogeochem, Jena, Germany
基金
中国国家自然科学基金;
关键词
OZONE POLLUTION; CHINA; REGRESSION; CHEMISTRY; NETWORKS; FRAMEWORK; PM2.5;
D O I
10.1038/s41612-023-00475-3
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Existing methods for fine-scale air quality assessment have significant gaps in their reliability. Purely data-driven methods lack any physically-based mechanisms to simulate the interactive process of air pollution, potentially leading to physically inconsistent or implausible results. Here, we report a hybrid multilevel graph neural network that encodes fluid physics to capture spatial and temporal dynamic characteristics of air pollutants. On a multi-air pollutant test in China, our method consistently improved extrapolation accuracy by an average of 11-22% compared to several baseline machine learning methods, and generated physically consistent spatiotemporal trends of air pollutants at fine spatial and temporal scales.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Efficient RCS Prediction of the Conducting Target Based on Physics-Inspired Machine Learning and Experimental Design
    Xiao, Donghai
    Guo, Lixin
    Liu, Wei
    Hou, Muyu
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021, 69 (04) : 2274 - 2289
  • [42] Physics-Inspired Machine Learning for Radiomap Estimation: Integration of Radio Propagation Models and Artificial Intelligence
    Zhang, Songyang
    Choi, Brian
    Ouyang, Feng
    Ding, Zhi
    IEEE COMMUNICATIONS MAGAZINE, 2024, 62 (08) : 155 - 161
  • [43] NO-REFERENCE MESH VISUAL QUALITY ASSESSMENT USING GRAPH-BASED DEEP LEARNING
    Abouelaziz, Ilyass
    Chetouani, Aladine
    El Hassouni, Mohammed
    Cherifi, Hocine
    IEEE MMSP 2021: 2021 IEEE 23RD INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2021,
  • [44] Automated design of pulse sequences for magnetic resonance fingerprinting using physics-inspired optimization
    Jordan, Stephen P.
    Hu, Siyuan
    Rozada, Ignacio
    McGivney, Debra F.
    Boyacioglu, Rasim
    Jacob, Darryl C.
    Huang, Sherry
    Beverland, Michael
    Katzgraber, Helmut G.
    Troyer, Matthias
    Griswold, Mark A.
    Ma, Dan
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (40)
  • [45] Distributed Information-Theoretic Target Detection Using Physics-Inspired Motion Coordination
    Sydney, Nitin
    Sofge, Donald
    2015 RESILIENCE WEEK (RSW), 2015, : 191 - 194
  • [46] Improving air quality prediction accuracy at larger temporal resolutions using deep learning and transfer learning techniques
    Ma, Jun
    Cheng, Jack C. P.
    Lin, Changqing
    Tan, Yi
    Zhang, Jingcheng
    ATMOSPHERIC ENVIRONMENT, 2019, 214
  • [47] Improving Air Quality Zoning Through Deep Learning and Hyperlocal Measurements
    Fernandez, Eduardo Illueca
    Valera, Antonio Jesus Jara
    Breis, Jesualdo Tomas Fernandez
    IEEE ACCESS, 2024, 12 : 38700 - 38716
  • [48] Physics-inspired transfer learning for ML-prediction of CNT band gaps from limited data
    Ksenia V. Bets
    Patrick C. O’Driscoll
    Boris I. Yakobson
    npj Computational Materials, 10
  • [49] Physics-inspired multimodal machine learning for adaptive correlation fusion based rotating machinery fault diagnosis
    Sun, Dingyi
    Li, Yongbo
    Liu, Zheng
    Jia, Sixiang
    Noman, Khandaker
    INFORMATION FUSION, 2024, 108
  • [50] Physics-inspired deep learning to characterize the signal manifold of quasi-circular, spinning, non-precessing binary black hole mergers
    Khan, Asad
    Huerta, E. A.
    Das, Arnav
    PHYSICS LETTERS B, 2020, 808