Leaf disease detection using machine learning and deep learning: Review and challenges

被引:47
|
作者
Sarkar, Chittabarni [1 ]
Gupta, Deepak [2 ]
Gupta, Umesh [3 ]
Hazarika, Barenya Bikash [4 ]
机构
[1] Natl Inst Technol Arunachal Pradesh, Dept Comp Sci & Engn, Jote, Arunachal Prade, India
[2] Motilal Nehru Natl Inst Technol Allahabad, Dept Comp Sci Engn, Prayagraj 211004, India
[3] Bennett Univ, Dept Comp Sci Engn, Greater Noida, UP, India
[4] Koneru Lakshmaiah Educ Fdn, Dept Comp Sci & Engn, Vaddeswaram, Andhra Pradesh, India
关键词
Plant disease; Machine learning; Deep learning; Recognition models; Leaf species; SUPPORT VECTOR MACHINE; NEURAL-NETWORK; ALTERNARIA-ALTERNATA; SPOT DISEASE; COMPUTER VISION; PLANT-DISEASES; IMAGE-ANALYSIS; ROT DISEASE; BLACK SPOT; MEAN SHIFT;
D O I
10.1016/j.asoc.2023.110534
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Identification of leaf disorder plays an important role in the economic prosperity of any country. Many parts of a plant can be infected by a virus, fungal, bacteria, and other infectious organisms but here we mainly considered the detection of leaf disease of a plant as a research topic. We have performed an in-depth study of this topic from 2010 to 2022 and found that many researchers use multispectral or hyperspectral imaging to study crop diseases. Machine learning (ML) and deep learning (DL) models are used to classify different types of leaf diseases. We made a workflow mechanism to help researchers in this field. Support vector machine (SVM), Random Forest, and multiple twin SVM (MTSVM) are popular ML models for predicting leaf disease, while convolutional neural networks (CNN), visual geometry group (VGG), ResNet (RNet), GoogLeNet, deep CNN (DCNN), back propagation neural networks (BPNN), DenseNet (DNet), LeafNet (LN), and LeNet are common deep learning models used for detecting leaf disease. Among these deep learning models, it is evident that models like CNN, VGG, and ResNet are highly capable at finding diseases in leaves. The performance of the algorithms is generally evaluated using F1 score, precision, accuracy and others. This review will be helpful for the researchers who are working in this area and looking for various efficient ML and DL-based classifiers for leaf disease detection.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:61
相关论文
共 50 条
  • [41] Automatic early detection of rice leaf diseases using hybrid deep learning and machine learning methods
    Vikram Rajpoot
    Akhilesh Tiwari
    Anand Singh Jalal
    Multimedia Tools and Applications, 2023, 82 : 36091 - 36117
  • [42] A Review on Automated Cancer Detection in Medical Images using Machine Learning and Deep Learning based Computational Techniques: Challenges and Opportunities
    Jatinder Manhas
    Rachit Kumar Gupta
    Partha Pratim Roy
    Archives of Computational Methods in Engineering, 2022, 29 : 2893 - 2933
  • [43] Plant Disease Detection Using Deep Learning: A Proof of Concept on Pear Leaf Disease Detection
    Fenu, Gianni
    Malloci, Francesca Maridina
    Onorato, Marcello
    Gerardi, Marco Secondo
    Scano, Angela
    MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2023, PT III, 2025, 2135 : 271 - 279
  • [44] A Review of Leaf Diseases Detection and Classification by Deep Learning
    Doutoum, Assad Souleyman
    Tugrul, Bulent
    IEEE ACCESS, 2023, 11 : 119219 - 119230
  • [45] Deep Learning and Machine Learning for Malaria Detection: Overview, Challenges and Future Directions
    Jdey, Imen
    Hcini, Hazala
    Ltifi, Hela
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2024, 23 (05) : 1745 - 1776
  • [46] Detection of Hate Tweets using Machine Learning and Deep Learning
    Ketsbaia, Lida
    Issac, Biju
    Chen, Xiaomin
    2020 IEEE 19TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2020), 2020, : 751 - 758
  • [47] Correction to: Fraud Detection Using Machine Learning and Deep Learning
    Akash Gandhar
    Kapil Gupta
    Aman Kumar Pandey
    Dharm Raj
    SN Computer Science, 5 (7)
  • [48] Phishing URL Detection Using Machine Learning and Deep Learning
    Ferdaws, Rawshon
    Majd, Nahid Ebrahimi
    2024 IEEE 5TH ANNUAL WORLD AI IOT CONGRESS, AIIOT 2024, 2024, : 0485 - 0490
  • [49] Money Laundering Detection using Machine Learning and Deep Learning
    Alotibi, Johrha
    Almutanni, Badriah
    Alsubait, Tahani
    Alhakami, Hosam
    Baz, Abdullah
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (10) : 732 - 738
  • [50] Intrusion Detection Using Machine Learning and Deep Learning Techniques
    Calisir, Sinan
    Atay, Remzi
    Pehlivanoglu, Meltem Kurt
    Duru, Nevcihan
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2019, : 656 - 660