Compressible nematic liquid crystal flows;
Global strong solutions;
Navier-slip boundary conditions;
Large oscillations;
LARGE-TIME BEHAVIOR;
WEAK SOLUTIONS;
EXISTENCE;
EQUATIONS;
ENERGY;
D O I:
10.1007/s12220-023-01386-8
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We investigate a simplified compressible nematic liquid crystal flow in two-dimensional (2D) bounded domains with Navier slip boundary conditions for velocity and Neumann boundary condition for orientation field. Based on delicate energy method and the structure of the model under consideration, we show the global existence and uniqueness of strong solutions when the initial total energy is suitably small. Our result may be regarded as an extension of the 2D Cauchy problem due to Wang (J Math Fluid Mech 18(3):539-569, 2016).
机构:
Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R ChinaHunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
机构:
Zhongyuan Univ Technol, Coll Sci, Zhengzhou 450007, Peoples R ChinaZhongyuan Univ Technol, Coll Sci, Zhengzhou 450007, Peoples R China
Niu, Yanxia
Wang, Yinxia
论文数: 0引用数: 0
h-index: 0
机构:
North China Univ Water Resources & Elect Power, Sch Math & Stat, Zhengzhou 450011, Peoples R ChinaZhongyuan Univ Technol, Coll Sci, Zhengzhou 450007, Peoples R China
机构:
Jilin Univ, Sch Math, Changchun, Peoples R China
Changchun Normal Univ, Coll Math, Changchun, Peoples R ChinaJilin Univ, Sch Math, Changchun, Peoples R China
Liu, Y. A. N. G.
Guo, R. E. N. Y. I. N. G.
论文数: 0引用数: 0
h-index: 0
机构:
Changchun Normal Univ, Coll Math, Changchun, Peoples R ChinaJilin Univ, Sch Math, Changchun, Peoples R China
Guo, R. E. N. Y. I. N. G.
Zhou, N. A. N.
论文数: 0引用数: 0
h-index: 0
机构:
Changchun Normal Univ, Coll Math, Changchun, Peoples R ChinaJilin Univ, Sch Math, Changchun, Peoples R China