Hydrogen Embrittlement Behavior and Mechanism of Low Carbon Medium Manganese Steel Gas Metal Arc Welding Joints

被引:0
|
作者
Du, Y. [1 ,2 ]
Gao, X. H. [2 ]
Wang, X. N. [1 ]
Dong, Y. [2 ]
Zhang, B. [2 ]
Wu, H. Y. [2 ]
Sun, C. [3 ]
Du, L. X. [2 ]
机构
[1] Soochow Univ, Sch Iron & Steel, Suzhou 215021, Jiangsu, Peoples R China
[2] Northeastern Univ, State Key Lab Rolling & Automat, Shenyang 110819, Liaoning, Peoples R China
[3] Nanjing Iron & Steel Co Ltd, Nanjing 210035, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
ASSISTED CRACKING; REVERSED AUSTENITE; TRAPPING SITES; STRENGTH; MICROSTRUCTURE; SUSCEPTIBILITY; TOUGHNESS; ATOMS;
D O I
10.1007/s11837-023-06064-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The hydrogen embrittlement behavior of two low-carbon medium manganese steel welding joints was elucidated using a slow strain rate tensile experiment, hydrogen permeation experiment, and hydrogen concentration test. The fracture starting position becomes heat-affected zone (HAZ) after hydrogen charging. The hydrogen concentration of HAZ is higher than weld material (WM) for two welding joints after hydrogen charging for both 1 h and 2 h. The hydrogen embrittlement susceptibility of the welding joint with high hydrogen concentration, which contains about 0.03 Ti in both WM and HAZ, is larger than the welding joint that does not contain Ti. When the hydrogen charging time of the Ti-contained welding joints increases from 1 h to 2 h, the fractography of WM changes from small shallow dimples (hydrogen enhanced localized plasticity) to quasi-cleavage and cleavage (hydrogen enhanced decohesion), and the fractography of HAZ changes from quasi-cleavage (hydrogen enhanced decohesion) to intergranular (hydrogen enhanced decohesion).
引用
收藏
页码:4407 / 4420
页数:14
相关论文
共 50 条
  • [21] HYDROGEN EMBRITTLEMENT IN LOW CARBON NICKEL AND MANGANESE STEELS
    BONISZEW.T
    BAKER, RG
    WELDING RESEARCH ABROAD, 1966, 12 (01): : 29 - &
  • [22] Hydrogen embrittlement of low carbon structural steel
    Djukic, M. B.
    Zeravcic, V. Sijacki
    Bakic, G.
    Sedmak, A.
    Rajicic, B.
    20TH EUROPEAN CONFERENCE ON FRACTURE, 2014, 3 : 1167 - 1172
  • [23] GAS METAL-ARC WELDING OF LOW-ALLOY STEEL PIPE
    LOHR, RT
    WATKINS, GE
    WELDING JOURNAL, 1965, 44 (05) : 379 - &
  • [24] Hydrogen Embrittlement Susceptibility of Gas Metal Arc Welded Joints from a High-Strength Low-Alloy Steel Grade S690QL
    Christ, Martin
    Guo, Xiaofei
    Sharma, Rahul
    Li, Tianyi
    Bleck, Wolfgang
    Reisgen, Uwe
    STEEL RESEARCH INTERNATIONAL, 2020, 91 (11)
  • [25] SELECTING CARBON-STEEL WIRES FOR GAS METAL-ARC WELDING HSLA STEEL
    不详
    METAL PROGRESS, 1974, 106 (01): : 236 - 239
  • [26] Analysis of the Low Cycle Fatigue Behavior of DP980 Steel Gas Metal Arc Welded Joints
    Rosado-Carrasco, Juliana G.
    Gonzalez-Zapatero, Walter F.
    Garcia, Christian J.
    Gomora, Cesar M.
    Jaramillo, David
    Ambriz, Ricardo R.
    METALS, 2022, 12 (03)
  • [27] HYDROGEN EMBRITTLEMENT OF HIGH-STRENGTH, LOW-CARBON, SILICON MANGANESE REINFORCING STEEL
    CHERNENKO, VT
    SIDORENKO, OG
    FEDOROVA, IP
    MIRONOV, VA
    DEMCHENKO, EM
    STEEL IN THE USSR, 1988, 18 (06): : 279 - 281
  • [28] COMPOSITIONAL SPECIFICATION FOR SOLID CARBON AND LOW ALLOY STEEL GAS SHIELDED METAL ARC WELDING WIRE.
    Anon
    Welding in the World, Le Soudage Dans Le Monde, 1987, 25 (7-8): : 146 - 150
  • [29] Effect of Welding Parameters on the Hydrogen Embrittlement of Cathodic Hydrogen-Charged Friction Stir Welded High Carbon Steel Joints
    Sun, Y. F.
    Fujii, H.
    Imai, H.
    Kondoh, K.
    CORROSION, 2015, 71 (08) : 923 - 936
  • [30] Microstructure, Mechanical Properties and Welding of Low Carbon, Medium Manganese TWIP/TRIP Steel
    Podany, Pavel
    Reardon, Christopher
    Koukolikova, Martina
    Prochazka, Radek
    Franc, Ales
    METALS, 2018, 8 (04)