Z-polyregular functions

被引:1
|
作者
Colcombet, Thomas [1 ]
Doueneau-Tabot, Gaetan [1 ,2 ]
Lopez, Aliaume [1 ,3 ]
机构
[1] Univ Paris Cite, CNRS, IRIF, F-75013 Paris, France
[2] Direct Gen Armement Ingn Projets, Paris, France
[3] ENS Paris Saclay, CNRS, LMF, Paris, France
关键词
D O I
10.1109/LICS56636.2023.10175685
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper studies a robust class of functions from finite words to integers that we call Z-polyregular functions. We show that it admits natural characterizations in terms of logics, Z-rational expressions, Z-rational series and transducers. We then study two subclass membership problems. First, we show that the asymptotic growth rate of a function is computable, and corresponds to the minimal number of variables required to represent it using logical formulas. Second, we show that firstorder definability of Z-polyregular functions is decidable. To show the latter, we introduce an original notion of residual transducer, and provide a semantic characterization based on aperiodicity.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Bent functions embedded into the recursive framework of Z-bent functions
    Dobbertin, Hans
    Leander, Gregor
    DESIGNS CODES AND CRYPTOGRAPHY, 2008, 49 (1-3) : 3 - 22
  • [42] Meromorphic functions of the form f(z) = Σn∞=1 an/(z-zn)
    Langley, JK
    Rossi, J
    REVISTA MATEMATICA IBEROAMERICANA, 2004, 20 (01) : 285 - 314
  • [44] REGION OF VARIABILITY OF UNIVALENT FUNCTIONS f(z) FOR WHICH zf′(z) IS SPIRALLIKE
    Ponnusamy, S.
    Vasudevarao, A.
    Yanagihara, H.
    HOUSTON JOURNAL OF MATHEMATICS, 2008, 34 (04): : 1037 - 1048
  • [45] Uniform asymptotic expansions for the Whittaker functions Mκ,μ(z) and Wκ,μ(z) with μ large
    Dunster, T. M.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2252):
  • [46] REGULAR FUNCTIONS F(Z) FOR WHICH ZF'(Z) IS ALPHA-SPIRAL
    LIBERA, RJ
    ZIEGLER, MR
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 166 (NAPR) : 361 - &
  • [47] COMPOSITIONS OF ANALYTIC-FUNCTIONS OF THE FORM FN(Z)=FN-1(FN(Z)), FN(Z)-]F(Z)
    GILL, J
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1988, 23 (02) : 179 - 184
  • [48] On the Growth of Some Functions Related to z(n)
    Trojovsky, Pavel
    MATHEMATICS, 2020, 8 (06)
  • [49] 4 FUNDAMENTAL FUNCTIONS OF Z-PLASTY
    FURNAS, DW
    ARCHIVES OF SURGERY, 1968, 96 (03) : 458 - &
  • [50] Lyα luminosity functions at redshift z ≈ 4.5
    Zheng, Zhen-Ya
    Finkelstein, Steven L.
    Finkelstein, Keely
    Tilvi, Vithal
    Rhoads, James E.
    Malhotra, Sangeeta
    Wang, Jun-Xian
    Miller, Neal
    Hibon, Pascale
    Xia, Lifang
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 431 (04) : 3589 - 3607