Existence of multi-spikes in the Keller-Segel model with logistic growth

被引:3
|
作者
Kong, Fanze [1 ]
Wei, Juncheng [1 ]
Xu, Liangshun [2 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
来源
基金
加拿大自然科学与工程研究理事会;
关键词
Chemotaxis models; logistic growth; spiky solutions; gluing method; PARABOLIC CHEMOTAXIS SYSTEM; LEAST-ENERGY SOLUTIONS; BLOW-UP; STATIONARY SOLUTIONS; PATTERN-FORMATION; BOUNDEDNESS;
D O I
10.1142/S021820252340002X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Keller-Segel model is a paradigm to describe the chemotactic mechanism, which plays a vital role on the physiological and pathological activities of uni-cellular and multi-cellular organisms. One of the most interesting variants is the coupled system with the intrinsic growth, which admits many complex nontrivial patterns. This paper is devoted to the construction of multi-spiky solutions to the Keller-Segel models with the logistic source in 2D. Assuming that the chemo-attractive rate is large, we apply the inner-outer gluing scheme to nonlocal cross-diffusion system and prove the existence of multiple boundary and interior spikes. The numerical simulations are presented to highlight our theoretical results.
引用
收藏
页码:2227 / 2270
页数:44
相关论文
共 50 条
  • [41] Bilinear Optimal Control of the Keller-Segel Logistic Model in 2D-Domains
    Braz e Silva, P.
    Guillen-Gonzalez, F.
    Perusato, C. F.
    Rodriguez-Bellido, M. A.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 87 (03):
  • [42] Blowup of solutions to generalized Keller-Segel model
    Biler, Piotr
    Karch, Grzegorz
    JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (02) : 247 - 262
  • [43] ON BLOWUP DYNAMICS IN THE KELLER-SEGEL MODEL OF CHEMOTAXIS
    Dejak, S. I.
    Egli, D.
    Lushnikov, P. M.
    Sigal, I. M.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2014, 25 (04) : 547 - 574
  • [44] LARGE TIME BEHAVIOR IN THE LOGISTIC KELLER-SEGEL MODEL VIA MAXIMAL SOBOLEV REGULARITY
    Cao, Xinru
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (09): : 3369 - 3378
  • [45] Exact solutions of the simplified Keller-Segel model
    Cherniha, Roman
    Didovych, Maksym
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (11) : 2960 - 2971
  • [46] On convergence to equilibria for the Keller-Segel chemotaxis model
    Feireisl, Eduard
    Laurencot, Philippe
    Petzeltova, Hana
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 236 (02) : 551 - 569
  • [47] Propagation of chaos for a subcritical Keller-Segel model
    Godinho, David
    Quininao, Cristobal
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (03): : 965 - 992
  • [48] Pattern formation (I): The Keller-Segel model
    Guo, Yan
    Hwang, Hyung Ju
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (07) : 1519 - 1530
  • [49] GLOBAL EXISTENCE FOR A CLASS OF KELLER-SEGEL MODELS WITH SIGNAL-DEPENDENT MOTILITY AND GENERAL LOGISTIC TERM
    Lv, Wenbin
    Wang, Qingyuan
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, 10 (01): : 25 - 36
  • [50] A GENERAL EXISTENCE RESULT FOR STATIONARY SOLUTIONS TO THE KELLER-SEGEL SYSTEM
    Battaglia, Luca
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (02) : 905 - 926