Elastic integrated electronics based on a stretchable n-type elastomer-semiconductor-elastomer stack

被引:21
|
作者
Shim, Hyunseok [1 ,2 ,3 ]
Sim, Kyoseung [4 ,5 ,6 ]
Wang, Binghao [7 ]
Zhang, Yongcao [2 ]
Patel, Shubham [1 ,4 ]
Jang, Seonmin [1 ,2 ]
Marks, Tobin J. J. [8 ,9 ]
Facchetti, Antonio [8 ,9 ,10 ]
Yu, Cunjiang [1 ,2 ,4 ,11 ,12 ]
机构
[1] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA 16802 USA
[2] Univ Houston, Mat Sci & Engn Program, Houston, TX 77204 USA
[3] Pusan Natl Univ, Dept Elect Engn, Busan, South Korea
[4] Univ Houston, Dept Mech Engn, Houston, TX 77204 USA
[5] Ulsan Natl Inst Sci & Technol UNIST, Dept Chem, Ulsan, South Korea
[6] Ulsan Natl Inst Sci & Technol UNIST, Ctr Wave Energy Mat, Ulsan, South Korea
[7] Southeast Univ, Sch Elect Sci & Engn, Joint Int Res Lab Informat Display & Visualizat, Nanjing, Peoples R China
[8] Northwestern Univ, Dept Chem, Evanston, IL USA
[9] Northwestern Univ, Mat Res Ctr, Evanston, IL USA
[10] Flexterra Inc, Skokie, IL USA
[11] Penn State Univ, Dept Biomed Engn, University Pk, PA 16802 USA
[12] Penn State Univ, Mat Res Inst, Dept Mat Sci & Engn, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
FIELD-EFFECT TRANSISTORS; CHARGE-TRANSPORT; PERFORMANCE; FABRICATION; CIRCUITS;
D O I
10.1038/s41928-023-00966-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An elastomer-semiconductor-elastomer stack structure can allow an intrinsically brittle n-type organic semiconductor to be stretched by 50% and used to make fully stretchable complementary electronics. Elastic integrated electronics are of potential use in a range of emerging applications, particularly those that require devices that can form an interface with soft biological tissue. The development of such devices has typically focused on the creation of stretchy p-type semiconductors, and the lack of suitable stretchy n-type semiconductors limits the potential of stretchable integrated systems. Here we show that a brittle n-type organic semiconductor can be made mechanically stretchable by integrating into a stack with an elastomer-semiconductor-elastomer architecture. The structure suppresses the formation and propagation of microcracks and can be stretched by up to 50% with negligible loss of performance. It also improves the long-term stability of the semiconductor in an ambient environment. We use the n-type elastomer-semiconductor-elastomer stack, together with other stretchy electronic materials, to build elastic transistors, digital logic gates, complementary electronics, p-n photodetectors and an active matrix multiplexed deformable imager.
引用
收藏
页码:349 / 359
页数:11
相关论文
共 50 条
  • [31] Complementary Integrated Circuits Based on p-Type SnO and n-Type IGZO Thin-Film Transistors
    Li, Yunpeng
    Yang, Jin
    Wang, Yiming
    Ma, Pengfei
    Yuan, Yvzhuo
    Zhang, Jiawei
    Lin, Zhaojun
    Zhou, Li
    Xin, Qian
    Song, Aimin
    IEEE ELECTRON DEVICE LETTERS, 2018, 39 (02) : 208 - 211
  • [32] High-Mobility n-Type Conjugated Polymers Based on Electron-Deficient Tetraazabenzodifluoranthene Diimide for Organic Electronics
    Li, Haiyan
    Kim, Felix Sunjoo
    Ren, Guoqiang
    Jenekhe, Samson A.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (40) : 14920 - 14923
  • [33] Enhanced mid-infrared transmission in heavily doped n-type semiconductor film based on surface plasmons
    Hua Lei
    Song Guo-Feng
    Guo Bao-Shan
    Wang Wei-Min
    Zhang Yu
    ACTA PHYSICA SINICA, 2008, 57 (11) : 7210 - 7215
  • [34] Core Fluorination Enhances Solubility and Ambient Stability of an IDT-Based n-Type Semiconductor in Transistor Devices
    Hodsden, Thomas
    Thorley, Karl J.
    Panidi, Julianna
    Basu, Aniruddha
    Marsh, Adam V.
    Dai, Haojie
    White, Andrew J. P.
    Wang, Changsheng
    Mitchell, William
    Glocklhofer, Florian
    Anthopoulos, Thomas D.
    Heeney, Martin
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (17)
  • [35] Complementary Inverter Based on n-Type and p-Type OFETs with the Same Ambipolar Organic Semiconductor and ITO S/D Electrodes
    Han, Jiangli
    Rong, Xin
    Xu, Chenhui
    Deng, Yunfeng
    Geng, Yanhou
    Dong, Guifang
    Duan, Lian
    ADVANCED ELECTRONIC MATERIALS, 2023, 9 (05)
  • [36] Characterization of n-type and p-type semiconductor gas sensors based on NiOx doped TiO2 thin films
    Wisitsmat, A.
    Tuantranont, A.
    Comini, E.
    Sberveglieri, G.
    Modarski, W.
    THIN SOLID FILMS, 2009, 517 (08) : 2775 - 2780
  • [37] Flexible and Stretchable Self-Powered Multi-Sensors Based on the N-Type Thermoelectric Response of Polyurethane/Nax(Ni-ett)n Composites
    Wan, Kening
    Taroni, Prospero J.
    Liu, Zilu
    Liu, Yi
    Tu, Ying
    Santagiuliana, Giovanni
    Hsia, I-Chuan
    Zhang, Han
    Fenwick, Oliver
    Krause, Steffi
    Baxendale, Mark
    Schroeder, Bob C.
    Bilotti, Emiliano
    ADVANCED ELECTRONIC MATERIALS, 2019, 5 (12)
  • [38] Development of n-Type Semiconductor Based on Cyclopentene- or Cyclohexene-Fused [C60]-Fullerene Derivatives
    Yamane, Yu
    Sugawara, Kiyotaka
    Nakamura, Naoshi
    Hayase, Shuichi
    Nokami, Toshiki
    Itoh, Toshiyuki
    JOURNAL OF ORGANIC CHEMISTRY, 2015, 80 (09): : 4638 - 4649
  • [39] Optimization of Synthesis of ZnO:Al as n-Type Transparent Conductive Layer for Oxide-Semiconductor-Based Solar Cells
    Bao Thoa Bui
    Bao An Tran Dang
    Thi Cuc Than
    Minh Hieu Nguyen
    Lam Huong Hoang Ngoc
    Van Diep Bui
    Quoc Hung Nguyen
    Van Thanh Pham
    Chi Hieu Hoang
    Thuat Nguyen-Tran
    JOURNAL OF ELECTRONIC MATERIALS, 2016, 45 (05) : 2442 - 2448
  • [40] 1,2,3-Triazolylfullerene-based n-type semiconductor materials for organic field-effect transistors
    Sadretdinova, Zarema R.
    Akhmetov, Arslan R.
    Salikhov, Renat B.
    Mullagaliev, Ilnur N.
    Salikhov, Timur R.
    MENDELEEV COMMUNICATIONS, 2023, 33 (03) : 320 - 322