Backward Importance Sampling for Online Estimation of State Space Models

被引:1
|
作者
Martin, Alice [1 ,2 ]
Etienne, Marie-Pierre [3 ]
Gloaguen, Pierre [4 ]
Le Corff, Sylvain [5 ]
Olsson, Jimmy [6 ]
机构
[1] Inst Polytech Paris, Telecom SudParis, Ecole Polytech, Palaiseau, France
[2] Inst Polytech Paris, Telecom SudParis, Samovar, Palaiseau, France
[3] Agrocampus Ouest, CNRS, IRMAR UMR 6625, Rennes, France
[4] Univ Paris Saclay, AgroParisTech, INRAE, UMR MIA Paris Saclay, F-91120 Palaiseau, France
[5] Sorbonne Univ, LPSM, UMR CNRS 8001, Paris, France
[6] KTH Royal Inst Technol, Dept Math, Stockholm, Sweden
关键词
Hidden Markov models; Online smoothing; Sequential Monte Carlo; HIDDEN MARKOV-MODELS; MAXIMUM-LIKELIHOOD; PARTICLE; APPROXIMATION; CONVERGENCE; SIMULATION; INFERENCE; FILTER;
D O I
10.1080/10618600.2023.2174125
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article proposes a new Sequential Monte Carlo algorithm to perform online estimation in the context of state space models when either the transition density of the latent state or the conditional likelihood of an observation given a state is intractable. In this setting, obtaining low variance estimators of expectations under the posterior distributions of the unobserved states given the observations is a challenging task. Following recent theoretical results for pseudo-marginal sequential Monte Carlo smoothers, a pseudo-marginal backward importance sampling step is introduced to estimate such expectations. This new step allows to reduce very significantly the computational time of the existing numerical solutions based on an acceptance-rejection procedure for similar performance, and to broaden the class of eligible models for such methods. For instance, in the context of multivariate stochastic differential equations, the proposed algorithm makes use of unbiased estimates of the unknown transition densities under much weaker assumptions than most standard alternatives. The performance of this estimator is assessed for high-dimensional discrete-time latent data models, for recursive maximum likelihood estimation in the context of Partially Observed Diffusion process (POD), and in the case of a bidimensional partially observed stochastic Lotka-Volterra model. for this article are available online.
引用
收藏
页码:1447 / 1460
页数:14
相关论文
共 50 条
  • [41] Assessing Ecosystem State Space Models: Identifiability and Estimation
    J. W. Smith
    L. R. Johnson
    R. Q. Thomas
    Journal of Agricultural, Biological and Environmental Statistics, 2023, 28 : 442 - 465
  • [42] Importance sampling-based estimation over AND/OR search spaces for graphical models
    Gogate, Vibhav
    Dechter, Rina
    ARTIFICIAL INTELLIGENCE, 2012, 184 : 38 - 77
  • [43] Gaussian Variational State Estimation for Nonlinear State-Space Models
    Courts, Jarrad
    Wills, Adrian
    Schon, Thomas
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 5979 - 5993
  • [44] State estimation for nonlinear state-space transmission models of tuberculosis
    Strydom, Duayne
    le Roux, Johan Derik
    Craig, Ian Keith
    RISK ANALYSIS, 2023, 43 (02) : 339 - 357
  • [45] State Estimation for a Class of Piecewise Affine State-Space Models
    Rui, Rafael
    Ardeshiri, Tohid
    Nurminen, Henri
    Bazanella, Alexandre
    Gustafsson, Fredrik
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (01) : 61 - 65
  • [46] On the estimation of state matrix and noise statistics in state-space models
    Enescu, M
    Koivunen, V
    IEEE 56TH VEHICULAR TECHNOLOGY CONFERENCE, VTC FALL 2002, VOLS 1-4, PROCEEDINGS, 2002, : 2192 - 2196
  • [47] ONLINE STRUCTURE SELECTION FOR MULTIVARIABLE STATE-SPACE MODELS
    VANOVERBEEK, AJM
    LJUNG, L
    AUTOMATICA, 1982, 18 (05) : 529 - 543
  • [48] Biased Online Parameter Inference for State-Space Models
    Del Moral, Pierre
    Jasra, Ajay
    Zhou, Yan
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2017, 19 (03) : 727 - 749
  • [49] Biased Online Parameter Inference for State-Space Models
    Pierre Del Moral
    Ajay Jasra
    Yan Zhou
    Methodology and Computing in Applied Probability, 2017, 19 : 727 - 749
  • [50] Nested particle filters for online parameter estimation in discrete-time state-space Markov models
    Crisan, Dan
    Miguez, Joaquin
    BERNOULLI, 2018, 24 (4A) : 3039 - 3086