Robust Approach for Uncertain Multi-Dimensional Fractional Control Optimization Problems

被引:5
|
作者
Jayswal, Anurag [1 ]
Baranwal, Ayushi [1 ]
机构
[1] Indian Inst Technol, Indian Sch Mines, Dept Math & Comp, Dhanbad 826004, India
关键词
Fractional control optimization problem; Uncertainty; Robust optimality conditions; Robust duality; Robust optimal solution; DUALITY;
D O I
10.1007/s40840-023-01469-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we focus our study on a multi-dimensional fractional control optimization problem involving data uncertainty (FP) and derive the parametric robust necessary optimality conditions and its sufficiency by imposing the convexity hypotheses on the involved functionals. We also construct the parametric robust dual problem associated with the above-considered problem (FP) and establish the weak and strong robust duality theorems. The strong robust duality theorem asserts that the duality gap is zero under the convexity notion. In addition, we formulate some examples to validate the stated conclusions.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] A Robust Approach to a Class of Uncertain Optimization Problems with Imprecise Probabilities
    Kasperski, Adam
    Zielinski, Pawel
    2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2016, : 1606 - 1613
  • [22] A new parallel approach for multi-dimensional packing problems
    Blazewicz, J
    Walkowiak, R
    PARALLEL PROCESSING APPLIED MATHEMATICS, 2002, 2328 : 194 - 201
  • [23] Robust saddle-point criteria for multi-dimensional control optimisation problems with data uncertainty
    Preeti
    Jayswal, Anurag
    Arana-Jimenez, Manuel
    INTERNATIONAL JOURNAL OF CONTROL, 2021, 94 (12) : 3288 - 3299
  • [24] An optimization approach to adaptive multi-dimensional capital management
    Delsing, G. A.
    Mandjes, M. R. H.
    Spreij, P. J. C.
    Winands, E. M. M.
    INSURANCE MATHEMATICS & ECONOMICS, 2019, 84 : 87 - 97
  • [25] The grouping differential evolution algorithm for multi-dimensional optimization problems
    Piotrowski, Adam P.
    Napiorkowski, Jaroslaw J.
    CONTROL AND CYBERNETICS, 2010, 39 (02): : 527 - 550
  • [26] Approximate criteria for the evaluation of truly multi-dimensional optimization problems
    Kowalczuk, Zdzislaw
    Bialaszewski, Tomasz
    2018 23RD INTERNATIONAL CONFERENCE ON METHODS & MODELS IN AUTOMATION & ROBOTICS (MMAR), 2018, : 386 - 391
  • [27] An Efficient Numerical Scheme for Solving Multi-Dimensional Fractional Optimal Control Problems With a Quadratic Performance Index
    Bhrawy, A. H.
    Doha, E. H.
    Tenreiro Machado, J. A.
    Ezz-Eldien, S. S.
    ASIAN JOURNAL OF CONTROL, 2015, 17 (06) : 2389 - 2402
  • [28] An approximate method for numerically solving multi-dimensional delay fractional optimal control problems by Bernstein polynomials
    Safaie, E.
    Farahi, M. H.
    Ardehaie, M. Farmani
    COMPUTATIONAL & APPLIED MATHEMATICS, 2015, 34 (03): : 831 - 846
  • [29] Solving multi-dimensional fractional optimal control problems with inequality constraint by Bernstein polynomials operational matrices
    Alipour, Mohsen
    Rostamy, Davood
    Baleanu, Dumitru
    JOURNAL OF VIBRATION AND CONTROL, 2013, 19 (16) : 2523 - 2540
  • [30] An approximate method for numerically solving multi-dimensional delay fractional optimal control problems by Bernstein polynomials
    E. Safaie
    M. H. Farahi
    M. Farmani Ardehaie
    Computational and Applied Mathematics, 2015, 34 : 831 - 846