On k-universal quadratic lattices over unramified dyadic local fields

被引:2
|
作者
He, Zilong [1 ]
Hu, Yong [2 ]
机构
[1] Dongguan Univ Technol, Sch Comp Sci & Technol, Dongguan 523808, Peoples R China
[2] Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
INTEGRAL-REPRESENTATIONS; FORMS; INDEFINITE; INTEGERS;
D O I
10.1016/j.jpaa.2023.107334
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k be a positive integer and let F be a finite unramified extension of Q2 with ring of integers OF. An integral (resp. classic) quadratic form over OF is called k-universal (resp. classic k-universal) if it represents all integral (resp. classic) quadratic forms of dimension k. In this paper, we provide a complete classification of k-universal and classic k-universal quadratic forms over OF. The results are stated in terms of the fundamental invariants associated to Jordan splittings of quadratic lattices. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:32
相关论文
共 50 条