Glutinous rice-derived carbon material for high-performance zinc-ion hybrid supercapacitors

被引:50
|
作者
Yao, Lei [1 ]
Jiang, Jiaxin [1 ]
Peng, Hongliang [1 ]
Yang, Huitian [1 ]
Liu, Siyan [1 ]
Wen, Xin [1 ]
Cai, Ping [1 ]
Zou, Yongjin [1 ]
Zhang, Huanzhi [1 ]
Xu, Fen [1 ]
Sun, Lixian [1 ]
Lu, Xueyi [2 ]
机构
[1] Guilin Univ Elect Technol, Sch Mat Sci & Engn, Guangxi Key Lab Informat Mat, Guilin 541004, Peoples R China
[2] Sun Yat sen Univ, Sch Mat, Shenzhen 518107, Peoples R China
基金
中国国家自然科学基金;
关键词
Zn-ion hybrid supercapacitor; Aqueous electrolyte; Biomass; Activated carbon cathode; Ultra-stable charge storage; ELECTROLYTE; BATTERIES; CAPACITOR; ANODES; XPS;
D O I
10.1016/j.est.2022.106378
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The increasing demand for wearable electronic systems has driven research on portable electrochemical energy storage devices. Zinc-ion hybrid capacitors have recently received considerable attention owing to their benefits of environmental friendliness, safety, and low cost. However, their moderate energy density has severely hampered their use in portable electronic equipment. In this study, we used the sweet messes from glutinous rice alcoholic fermentation as a highly available green carbon source to prepare a new biomass-derived porous carbon material by mixing it with KOH under a nitrogen atmosphere. GRPC-A13 has a rich microporous structure, high micropore area (1991 m2 g1), and abundant oxygen content (7.0 at.%). Subsequently, a carbon- based zinc-ion hybrid supercapacitor was assembled with GRPC-A13 as the cathode, and zinc foil and 2 mol/L ZnSO4 as the anode and electrolyte, respectively. Zn//GRPC-A13 devices offer an ultrahigh energy density of 116 Wh kg1 at a power density of 800 W kg1. In addition, they have a long lifetime of 270,000 constant- current charge/discharge cycles and still maintain 100 % Coulombic efficiency. This improvement is princi-pally due to the rapid ion adsorption/desorption on the GRPC-A13 cathode electrodes and reversible zinc-ion plating/exfoliation on battery-type zinc negative electrodes. These results provide insight into the develop-ment of zinc-ion hybrid supercapacitors in miniature electronics.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Porous Carbon Derived from Sweet Potato Biomass as Electrode for Zinc-ion Hybrid Supercapacitors
    Hu, Hongyu
    Wu, Guojiang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2021, 16 (09): : 1 - 9
  • [32] Recent Advances in High-Performance Carbon-Based Electrodes for Zinc-Ion Hybrid Capacitors
    Liu, Ying
    Song, Lechun
    Li, Chenze
    Song, Caicheng
    Wu, Xiang
    BATTERIES-BASEL, 2024, 10 (11):
  • [33] Biomass-tar-derived oxygen-enriched porous carbon as a high-performance carbon electrode material for double electric layer and zinc-ion hybrid supercapacitor
    Ni, Xuanyuan
    Zhao, Yunxing
    Cai, Pengcheng
    Xu, Qing
    Li, Denian
    DIAMOND AND RELATED MATERIALS, 2024, 148
  • [34] Insights of Zinc Ion Storage in Chilli-Stem Derived Porous Carbon Enabling Ultrastability and High Energy Density of Zinc-Ion Hybrid Supercapacitors
    Gupta, Himanshu
    Nair, Manikantan R.
    Kumar, Manoj
    Awasthi, Kamlendra
    Goel, Saurav
    Roy, Tribeni
    Sarkar, Debasish
    ACS APPLIED MATERIALS & INTERFACES, 2024, 17 (01) : 1221 - 1233
  • [35] Vanadium Pentoxide Nanofibers/Carbon Nanotubes Hybrid Film for High-Performance Aqueous Zinc-Ion Batteries
    Liu, Xianyu
    Ma, Liwen
    Du, Yehong
    Lu, Qiongqiong
    Yang, Aikai
    Wang, Xinyu
    NANOMATERIALS, 2021, 11 (04)
  • [36] Solvent-guided nanoarchitecturing of heterodiatomic carbon superstructures for high-performance zinc-ion hybrid capacitors
    Huang, Qi
    Huang, Lu
    Jin, Yaowei
    Sun, Yaojie
    Song, Ziyang
    Xie, Fengxian
    CHEMICAL ENGINEERING JOURNAL, 2024, 482
  • [37] Enhancement of zinc-ion storage capability by synergistic effects on dual-ion adsorption in hierarchical porous carbon for high-performance aqueous zinc-ion hybrid capacitors
    Li, Heng-Xiang
    Shi, Wen-Jing
    Zhang, Xiaohua
    Liu, Ying
    Liu, Ling-Yang
    Dou, Jianmin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 667 : 700 - 712
  • [38] High load, long cycle and flexible zinc-ion hybrid supercapacitors
    Zhang, Zhiwei
    Liu, Yaodong
    Wang, Liying
    Li, Xuesong
    Lu, Wei
    Yang, Xijia
    JOURNAL OF ENERGY STORAGE, 2024, 79
  • [39] Waste frying oil derived carbon nano-onions as a cost-effective cathode material for high-voltage zinc-ion hybrid supercapacitors
    Das, Gouri Sankar
    Panigrahi, Rajarshi
    Ghosh, Somnath
    Tripathi, Kumud Malika
    MATERIALS TODAY SUSTAINABILITY, 2024, 25
  • [40] Teak wood derived porous carbon: An efficient cathode material for zinc-ion hybrid supercapacitor
    Chakraborty, Anjan
    Paul, Aparna
    Ghosh, Anirban
    Murmu, Naresh Chandra
    Kuila, Tapas
    ENERGY STORAGE, 2024, 6 (01)