Non-uniform Continuity of the Generalized Camassa-Holm Equation in Besov Spaces

被引:3
|
作者
Li, Jinlu [1 ]
Wu, Xing [2 ]
Zhu, Weipeng [3 ]
Guo, Jiayu [1 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Jiangxi, Peoples R China
[2] Henan Agr Univ, Coll Informat & Management Sci, Zhengzhou 450002, Henan, Peoples R China
[3] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized Camassa-Holm equation; Non-uniform continuous dependence; Besov spaces; WELL-POSEDNESS; CAUCHY-PROBLEM; ILL-POSEDNESS; INITIAL DATA; DEPENDENCE; ANALYTICITY;
D O I
10.1007/s00332-022-09866-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Cauchy problem for the generalized Camassa-Holm equation proposed by Hakkaev and Kirchev (Commun Partial Differ Equ 30:761-781, 2005). We prove that the solution map of the generalized Camassa-Holm equation is not uniformly continuous on the initial data in Besov spaces. Our result includes the present work Li et al. (Differ Equ 269:8686-8700, 2020) on Camassa-Holm equation with Q = 1 and extends the previous non-uniform continuity in Sobolev spaces Mi and Mu (Monatsh Math 176:423-457, 2015) to Besov spaces.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] On the Cauchy problem for a generalized Camassa-Holm equation
    Mustafa, OG
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (06) : 1382 - 1399
  • [42] CLASSICAL SOLUTIONS OF THE GENERALIZED CAMASSA-HOLM EQUATION
    Holmes, John
    Thompson, Ryan C.
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2017, 22 (5-6) : 339 - 362
  • [43] Solitary waves for a generalized Camassa-Holm equation
    Mustafa, Octavian G.
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2007, 14 (02): : 205 - 212
  • [44] THE CAUCHY PROBLEM FOR A GENERALIZED CAMASSA-HOLM EQUATION
    Himonas, A. Alexandrou
    Holliman, Curtis
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2014, 19 (1-2) : 161 - 200
  • [45] Phase portraits of a generalized Camassa-Holm equation
    Li, Jing
    Sun, Min
    Beijing Gongye Daxue Xuebao/Journal of Beijing University of Technology, 2010, 36 (10): : 1428 - 1432
  • [46] ON THE CAUCHY PROBLEM FOR A GENERALIZED CAMASSA-HOLM EQUATION
    Chen, Defu
    Li, Yongsheng
    Yan, Wei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (03) : 871 - 889
  • [47] Non-uniform continuity of the Fokas–Olver–Rosenau–Qiao equation in Besov spaces
    Xing Wu
    Yanghai Yu
    Monatshefte für Mathematik, 2022, 197 : 381 - 394
  • [48] Ill-posedness for the Camassa-Holm and related equations in Besov spaces
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 306 : 403 - 417
  • [49] The local well-posedness in Besov spaces and non-uniform dependence on initial data for the interacting system of Camassa-Holm and Degasperis-Procesi equations
    Zhou, Shouming
    MONATSHEFTE FUR MATHEMATIK, 2018, 187 (04): : 735 - 764
  • [50] Existence and nonexistence of solutions for the generalized Camassa-Holm equation
    Pan Xiujuan
    Shin Min Kang
    Young Chel Kwun
    Advances in Difference Equations, 2014